Italiano

Polarization of Laser Writing Waveguides Controlled by Liquid Crystal

207
2024-03-13 10:59:23
Vedi traduzione

German researchers have developed a method for controlling and manipulating optical signals by embedding liquid crystal layers into waveguides created by direct laser writing. This work has produced devices capable of electro-optic control of polarization, which may open up possibilities for chip based devices and complex photonic circuits based on femtosecond write waveguides.

Researcher Alexandro Albertucci from Jena Friedrich Schiller University suggests that this progress may benefit other data intensive applications both inside and outside the data center.

Researchers combine two basic photon technologies by embedding a layer of liquid crystal inside the waveguide. When the light beam propagating inside the waveguide enters the liquid crystal layer, it will change the phase and polarization of the light when an electric field is applied. Then, the modified beam passes through the second part of the waveguide, propagating a beam with modulation characteristics. The fused silica waveguide comprises a tunable wave plate. Researchers demonstrated the complete modulation of light polarization at two visible light wavelengths using this system.

Alberucci said, "Our work paves the way for integrating new optical functions into the entire volume of a single glass chip, enabling compact 3D photonic integrated devices that were previously impossible to achieve. The unique 3D characteristics of femtosecond written waveguides can be used to create new spatial light modulators, where each pixel is individually addressed by a waveguide.".

Albertucci added that this technology can also be applied in the experimental implementation of dense optical neural networks.
Femtosecond lasers can be used to write waveguides deep into the material, rather than just writing waveguides on the surface like other methods, making it a promising method to maximize the number of waveguides on a single chip. This method involves focusing a strong laser beam inside a transparent material. When the optical intensity is high enough, the beam will change the material under illumination, resembling a pen with micrometer level accuracy.

"The most important drawback of using femtosecond laser writing technology to create waveguides is the difficulty in modulating the optical signals in these waveguides," said Alberucci. Due to the need for devices capable of controlling the transmission of signals in a complete communication network, our work explores new solutions to overcome this limitation.

Although the optical modulation of femtosecond laser writing into waveguides was previously achieved through local heating of waveguides, the use of liquid crystals, such as in recent works, can directly control polarization. Albertucci said that the benefits of this method include lower power consumption; Can independently handle individual waveguides in bulk; And reduce crosstalk between adjacent waveguides.

In addition, although the use of liquid crystals as modulators has become mature, this work helps to map the route for using liquid crystal properties as modulators in photonic devices embedded with waveguides throughout the entire volume, said Alberucci.

Researchers say that as this study is still a proof of concept, more work needs to be done before the technology is ready for practical application. For example, current devices modulate each waveguide in the same way. Therefore, the goal of the researchers is to achieve independent control of each waveguide.
This study was published in Optical Materials Express.

Source: Laser Net

Raccomandazioni correlate
  • Research progress and prospects of CFRP laser surface cleaning

    Researchers from Materials Science at Harbin Institute of Technology, Zhengzhou Research Institute at Harbin Institute of Technology, and Key Laboratory of Microsystems and Microstructure Manufacturing at Harbin Institute of Technology, Ministry of Education, reviewed and reported on the research progress of laser surface cleaning of carbon fiber reinforced polymer composites (CFRP). The relevant ...

    03-06
    Vedi traduzione
  • Super-resolution fluorescence microscopy utilizes fluorescent probes and specific excitation and emission programs

    Super-resolution fluorescence microscopy surpasses the diffraction limit of what used to be a barrier by using fluorescent probes and specific excitation and emission programs. Most SR technologies heavily rely on image computation and processing to retrieve SR information. However, factors such as fluorescence group photophysics, chemical environment of the sample, and optical settings may cause ...

    2024-01-23
    Vedi traduzione
  • Enlightra and DESY Hamburg developed an improved and scalable comb laser

    Laser technology startup Enlightra collaborates with DESY Hamburg to develop and design more stable and efficient comb lasers. This work demonstrates a microresonator with programmable synthetic reflection, providing tailored injection feedback for driving lasers. This technology has significantly improved compared to traditional self injection locking technology and can be produced using standard...

    2024-01-26
    Vedi traduzione
  • The "white" laser device from startup Superlight Photonics will completely transform imaging

    Superlight Photonics, a start-up company headquartered in Enshurd, has developed a broadband laser chip that can replace the bulky and power consuming technology currently used in advanced imaging and metering equipment.This idea suddenly appeared in his mind, while moving his other belongings from Germany to his new home in Enschede. During his doctoral research at the Max Planck Institute of Mul...

    2023-10-28
    Vedi traduzione
  • From Fiction to Reality: Laser Cutting Technology Has Entered the Shipbuilding Industry

    Laser cutting is a type of metal processing. In industry, there are three main cutting methods: mechanical cutting, thermal cutting, and a set of high-precision cutting methods. Laser technology belongs to the third category. The cutting in this method occurs due to the influence of the laser beam on the product. In fact, it is the molten metal produced by rapid pulse point melting and then blowin...

    2023-12-28
    Vedi traduzione