Italiano

New Progress: III-V Laser and Silicon Optics Technology Achieve Single Chip High Integration

220
2024-03-01 13:57:17
Vedi traduzione

Recently, Scientific Photonics, a supplier of silicon photonic integrated circuits (PICs) headquartered in Grenoble, announced that it has successfully integrated III-V-DFB lasers and amplifiers with standard silicon photonic technology into the production process of Tower Semiconductor.



By utilizing proprietary technology and standard silicon photonics, Scientific Photonics has achieved full integration of lasers and amplifiers on a single chip, providing excellent performance, speed, reliability, as well as high-density and low-power advantages for data centers, artificial intelligence, and 5G applications.

How to achieve it?
The implementation of this technology benefits from Tower Semiconductor's large-scale basic PH18M silicon photon foundry technology, which includes low loss waveguides, photodetectors, and modulators.

Scientific Photonics successfully integrated the DFB laser and amplifier onto the back of the wafer. According to the further test of the Scintil circuit by the customer, this integration does not need to be sealed, and at the same time, it shows excellent anti-aging characteristics and stability.

High level evaluations from both parties
Scintil Photonics is an advanced supplier of silicon photonic integrated circuits, providing single-chip integrated lasers and optical amplifiers. Its products are unique in providing higher bit rates for optical communication applications, as well as scalable, cost-effective, and mass-produced PIC (Photonic Integrated Circuit) solutions.

Regarding this breakthrough, Sylvie Menezo, President and CEO of Scientific Photonics, said, "We are honored to have established a partnership with Tower Semiconductor, a leading global wafer foundry. This collaboration marks an important milestone in our efforts to advance communication technology and products."

He added, "Through our long-term cooperation, we have the ability to provide laser enhanced silicon photon technology, redefining integration, performance, and scalability. This will enable Scintil to be produced in large quantities to meet the urgent needs of the market. In addition, our technology shows enormous potential to adapt to the integration of more materials, such as quantum dots and lithium niobate materials."

Edward Preisler, Vice President and General Manager of Tower Semiconductor's RF Business Unit, also expressed his joy: "We are pleased to support Scientific Photonics in this highly integrated solution, which fully utilizes our company's mature production components. The integration of III-V optical amplifiers/lasers is highly consistent with Tower Semiconductor's commitment to bringing cutting-edge silicon photon technology to the market."

Source: OFweek

Raccomandazioni correlate
  • China University of Science and Technology realizes millisecond level integrated quantum memory

    Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the field of integrated quantum storage. The research team led by Li Chuanfeng and Zhou Zongquan has improved the storage time of integrated quantum memory from 10 microseconds to milliseconds based on their original noiseless photon echo (NLPE) scheme, while s...

    03-31
    Vedi traduzione
  • Molecular orientation is key: a new perspective on revealing electronic behavior using two-photon emission spectroscopy

    Organic electronics has aroused great interest in academia and industry due to its potential applications in OLEDs and organic solar cells, with advantages such as lightweight design, flexibility, and cost-effectiveness. These devices are made by depositing organic molecular thin films onto a substrate that serves as electrodes and exerting their effects by controlling electron transfer between th...

    2024-03-19
    Vedi traduzione
  • New nanophotonic circuits demonstrate the potential of quantum networks

    The Purdue University team in the United States has captured alkali metal atoms (cesium) in integrated photonic circuits, which can serve as transistors for photons (the smallest energy unit of light). These captured atoms demonstrate for the first time the potential of cold atom integrated nanophotonic circuits to construct quantum networks. The research results were published in the latest issue...

    2024-08-14
    Vedi traduzione
  • Scientists demonstrate effective fusion "spark plugs" in groundbreaking experiments

    Researchers from the Laser Energy Laboratory at the University of Rochester led the experiment and demonstrated an efficient "spark plug" for direct driving of inertial confinement fusion. In two studies published in the journal Nature Physics, the team shared their findings and detailed the potential to expand these methods with the aim of successful nuclear fusion in future facilities.LLE is the...

    2024-03-04
    Vedi traduzione
  • The research team developed additive manufacturing (AM) technology based on hydrogel injection, and related research was published on Nano Letters

    It is reported that the research team of California Institute of Technology has developed an additive manufacturing (AM) technology based on hydrogel injection, which uses two-photon lithography technology to produce 3D metal with a characteristic resolution of about 100 nm.The relevant research is published in the journal Nano Letters, titled 'Suppressed Size Effect in Nanopillars with Hierarchy ...

    2023-09-25
    Vedi traduzione