Italiano

Researchers have captured the strange behavior of laser induced gold

690
2024-02-17 11:20:40
Vedi traduzione

A new study conducted by the US Department of Energy's SLAC National Accelerator Laboratory has revealed the strange behavior of gold when impacted by high-energy laser pulses.

When certain materials are subjected to strong laser excitation, they will quickly disintegrate. But gold is exactly the opposite: it becomes more resilient and resilient. This is because the way gold atoms vibrate together - their phonon behavior - has changed.

"Our research findings challenge previous understanding, indicating that under certain conditions, metals like gold become stronger rather than melting when subjected to strong laser pulses," said Adrien Descamps, a researcher at Queen's University of Belfast who led the study during his graduate studies at Stanford University and SLAC. This is in stark contrast to semiconductors, which become unstable and melt.

For decades, simulations have hinted at the possibility of this phenomenon, known as phonon hardening. Now, using SLAC's linear accelerator coherent light source, researchers have finally brought this phonon hardening to people's attention. The team has published their research results in Scientific Progress.

"It's a fascinating journey to see our theoretical predictions validated in experiments," said collaborator Emma McBride, a researcher at Queen's University Belfast and former Panofsky researcher at SLAC's high-energy density science department. The accuracy of measuring these phenomena on LCLS is astonishing, opening up new possibilities for future research in materials science.

In their experiment, the team aimed an optical laser pulse at a thin gold film in an extreme conditions material laboratory chamber, and then used ultrafast X-ray pulses from LCLS to capture atomic level snapshots of material reactions. This high-resolution glimpse of the world of gold atoms allows researchers to observe subtle changes and capture the moment when phonon energy increases, providing specific evidence of phonon hardening.

"We use X-ray diffraction in LCLS to measure the structural response of gold to laser excitation," McBride said. This reveals insights into the arrangement and stability of atoms under extreme conditions.

Researchers have found that when gold absorbs extremely high-energy optical laser pulses, the force that holds its atoms together becomes stronger. This change causes atoms to vibrate faster, which can alter the reaction of gold to heat and may even affect its melting temperature.

"Looking ahead, we are pleased to apply these findings to more practical applications, such as laser processing and material manufacturing, where understanding these processes at the atomic level may lead to improvements in technology and materials," Descamps said. We also plan to conduct more experiments and hope to explore these phenomena on a wider range of materials. For our field, this is an exciting moment, and we look forward to seeing where these findings will take us.

Source: Laser Net

Raccomandazioni correlate
  • Harvard University and University of Vienna invented tunable laser chips

    Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Vienna University of Technology (TU Wien) have invented a new type of tunable semiconductor laser that shows smooth, reliable, wide-range wavelength tuning in a simple, chip-sized design.Tunable lasers are integral to many technologies, from high-speed telecommunications to medical diagnostics to safet...

    07-16
    Vedi traduzione
  • Tower and Fortsense have announced the launch of their highly advanced 3D imager for LiDAR

    Recently, Gaota Semiconductor announced the successful development of an advanced 3D imager based on dToF technology for LiDAR applications. The newly developed product FL6031 is based on Tower's 65nm Stacked BSI CIS platform and has pixel level hybrid bonding function. It is the first in a series of products aimed at meeting the needs of numerous deep sensing applications in the automotive, consu...

    2023-09-14
    Vedi traduzione
  • Farnell provides its own branded 3D printing consumables

    Farnell stated that it will store a series of 3D printed filaments under its Multicomp Pro brand, targeting "design engineers, creators, and hobbyists."."With the growing interest and demand for 3D printing, we are pleased to provide our customers with a diverse range of 3D printer consumables aimed at meeting the quality standards required by engineers," added Steve Jagger Marsh, the company's pr...

    2024-06-03
    Vedi traduzione
  • OPO laser testing optical components

    Optical parametric oscillator laser tests fibers and components to characterize the spectral response of optical components, thereby providing a competitive advantage in the optical industry.OPO lasers have long been used in complex testing and measurement applications, such as mass spectrometry, photoacoustic imaging, and spectroscopy. Now, these "tunable" pulse lasers are being used to facilitat...

    2024-02-20
    Vedi traduzione
  • FGI utilizes Fraunhofer's LiDAR technology for maritime surveying

    The highly respected Finnish Institute of Geospatial Studies will utilize the advanced LiDAR system developed by the Fraunhofer Institute of Physical Measurement Technology for future ocean surface surveys. Significant progress is expected in data quality and on-site measurement efficiency, and the state-owned research department is collaborating with Fraunhofer IPM on a joint project. They are jo...

    2024-02-14
    Vedi traduzione