Italiano

The team has developed a method for integrating an electro-optic modulator device on the end face of a single-mode fiber optic jumper

356
2023-08-24 11:46:55
Vedi traduzione

Electro optical modulators (EOMs) are the main components in optical communication networks, which can control the amplitude, phase, and polarization of light through external electrical signals. 

In order to achieve ultra compact and high-performance EOM, most of today's research focuses on on-chip devices that combine semiconductor technology with state-of-the-art tunable materials. However, integrated EOM, as an independent on-chip component, is usually separated from the light source.

Therefore, additional interfaces for coupling light from the light source to the waveguide of the on-chip device are essential. Although state-of-the-art coupling schemes, including edge coupling and grating coupling, have been adopted, they are still affected by limited integration density and narrowband operation, respectively.

In addition, both coupling schemes require ultra precise alignment and complex packaging, making on-chip devices expensive for customers. Therefore, there is a need for an EOM device that avoids coupling complexity and further reduces coupling losses.

In a new paper published in the journal Optics: Science and Applications, a group of scientists developed a method of directly integrating EOM devices onto the end face of single-mode fiber jumpers, using standard fiber interfaces to connect EOM devices to light sources.

Using the standard nanomachining method developed in our previous work, the EOM module can be directly integrated on the tip of a single-mode fiber, thus avoiding coupling processing in the essence of superfiber EOM, "said Professor Qiu Min.

This plasma superfiber EOM has a clear plasma organic mixing configuration. Benefiting from ultra-thin and high-quality plasma metasurfaces, nano processing friendly and efficient EO polymers, the spectral amplitude and quality factor of light are well controlled to improve the resonance sensitivity of EO modulation.

More interestingly, by properly designing plasma mode, resonant waveguide mode, and Fabry Perot mode, tunable dual band operation can be achieved in the telecommunications O and S bands, "added co lead authors Lei Zhang and Xinyu Sun.

The microfiber EOM is further driven by DC/AC signals. The modulation speed of the metafiber EOM can reach up to 1000 MHz, with a bias voltage of ± 9 V, which is the best performance of the lumped fiber integrated EOM.

This type of ultra fiber EOM provides a new perspective for designing ultra compact and high-performance EO devices, which are suitable for applications that require compact configurations, high integration capabilities, and low coupling losses, such as active mode-locked fiber lasers and tunable broadband fiber polarizers. This work also provides a way for the "plug and play" implementation of optoelectronic devices and ultra compact "all fiber" optical systems in communication, imaging, sensing, and other fields Professor Wang Jiyong added.

Source: Laser Network

Raccomandazioni correlate
  • Researchers have successfully developed the world's first superconducting broadband photon detector

    Researchers at the National Institute of Information and Communication Technology in the United States have invented a new structure of a superconducting strip photon detector that can achieve efficient photon detection even in wide strips, and have successfully developed the world's first superconducting wide strip photon detector.The band width of the detector is more than 200 times that of trad...

    2023-11-02
    Vedi traduzione
  • The technological iteration route of automotive millimeter wave radar chips

    The rapid development of intelligent cars and autonomous driving technology has made millimeter wave radar inconspicuous, and the widespread application of millimeter wave radar has driven the technological evolution of MMIC.From the expensive gallium arsenide (GaAs) process in the early days to the mainstream CMOS and SiGe processes today, and then to the future promising FD-SOI process, the cont...

    2024-12-07
    Vedi traduzione
  • Swedish KTH develops 3D printed quartz glass micro optical devices on optical fibers

    In what has been described as the "first communication", Swedish researchers conducted 3D printed quartz glass micro optical devices on the tip of optical fibers. They said that this progress could lead to faster Internet and better connectivity, as well as innovations such as smaller sensors and imaging systems.Scientists from the KTH Royal Institute of Technology in Stockholm have stated that co...

    2024-05-23
    Vedi traduzione
  • Silicon Valley giants compete for a new 3D printing space race track

    Recently, Eric Schmidt, former CEO of Google, will take over as CEO of Relativity Space, marking his first CEO position since leaving Google.Relativity Space is known for producing rockets using unusual technologies, including 3D printers, automated robots, and artificial intelligence. In 2023, Relativity Space successfully launched the Terran 1 rocket, proving that its 3D printing technology can ...

    03-24
    Vedi traduzione
  • Aerotech's next-generation laser processing technology for medical device manufacturing

    Recently, Aerotech Inc., a global leader in precision motion control and automation, launched the ultimate cylindrical laser machining motion platform LaserTurn160. LaserTurn160 is designed for unparalleled precision and efficiency, with a 40% increase in production capacity compared to similar systems, setting a new standard for medical device manufacturing. Extremely high efficiency, unparalle...

    02-08
    Vedi traduzione