Italiano

Europe builds an independent supply chain for Alexander laser crystals for space missions and atmospheric research

465
2023-12-22 14:16:03
Vedi traduzione

Recently, companies from Lithuania, Italy, and Germany have reached a new milestone in the European independent space mission - based on the Galactic project, they have developed a supply chain for Alexandrite laser crystals in Europe to study changes in the atmosphere and Earth's surface.

The high-power Alexander laser crystals and coatings developed in the GALACTIC project will be used to collect atmospheric and vegetation observation data related to climate change. The goal of the research team is to apply this type of laser crystal to satellite based LiDAR equipment systems for coastline mapping, storm surge modeling, and seabed measurement.

"Drought, heat waves, and floods cause increasing losses every year. It is gratifying that LiDAR instruments equipped with Alexandrite lasers can help us detect atmospheric changes. The near-infrared wavelength of the laser can accurately study atmospheric gases, aerosols, clouds, their motion, and temperature," said Antanas Laurutis, CEO of Altechna, a laser company involved in the project, "Lidar can analyze aerosols, clouds, and atmospheric components in detail, thereby better predicting climate change."

For LiDAR, Alexander laser crystals are actually a valuable material - they can adjust their light wavelength within a certain range for laser applications, approximately between 700 and 860 nanometers.

This adaptability is crucial for technologies such as Raman and Differential Absorption Lidar (DIAL) used for studying the atmosphere. Raman LiDAR recognizes molecules through its unique light pattern, while DIAL systems can recognize gases such as SO2, NOx, and HCl, which can cause acid rain.

The purpose of the GALACTIC mission of the Horizon 2020 project in Europe is to develop replicable Alexandrite crystals coated entirely with European suppliers. Last year, the EU officially announced that space would be a strategic focus of its strategic compass and emphasized the need to develop an EU space strategy with a focus on security and defense.

"For Europe, aerospace is a strategic area, and the supply chain developed during the 'Galactic' project will enable space missions to be conducted independently of other regions," Antanas Laurutis said. "Europe will also avoid export controls, as export controls often make such projects difficult."

Altechna is one of the leading optical engineering companies in the Central and Eastern European Union, contributing to the development of specific coating designs and processes for electron beam and reactive magnetron sputtering equipment.

Researchers studied crystals in Europe and compared them with crystals produced by world-class suppliers, mainly from companies in the United States and China. "Tests have shown that the quality of crystals in the GALACTIC mission is comparable to non European technology solutions," said Laurynas Lukosevicius, chief scientist of Altechna. "This is a big step for Europe to independently use laser technology in space missions."

This new European technology has been validated by the maturity of the aerospace standard TRL 6 technology. "The space standard coating of TRL 6's Alexandrite laser crystal is a key technology for achieving future Earth observation missions. With our partners, we are developing an advanced laser prototype that will enable Europe to obtain more accurate data from atmospheric research," Luko said š Evi č ius said, "For example, using a LiDAR instrument with an Alexandrite laser can help us better identify cloud types and prepare for adverse weather conditions."

Source: OFweek Laser Network

Raccomandazioni correlate
  • Scientists use glass to create femtosecond lasers

    Image source: Federal Institute of Technology in Lausanne, SwitzerlandScience and Technology Daily, Beijing, September 27th (Reporter Zhang Jiaxin) Commercial femtosecond lasers are manufactured by placing optical components and their mounting bases on a substrate, which requires strict alignment of optical components. So, is it possible to manufacture femtosecond lasers entirely from glas...

    2023-09-28
    Vedi traduzione
  • The Laser Industry Shines at the Expo, showcasing the country's key weapons and disruptive new products

    The China International Industrial Expo is an important window and economic and trade exchange and cooperation platform for China's industrial sector to the world, as well as a window for the world to understand the current development status of China's manufacturing industry. It is understood that the scale, energy level, and number of new exhibits of this year's Industrial Expo are all the highe...

    2023-09-23
    Vedi traduzione
  • Shanghai Optics and Machinery Institute has made progress in the research of new terahertz sources based on Yb lasers

    Recently, the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made new progress in generating intense field terahertz waves based on Yb laser pumped organic crystals. The relevant research results were published in Applied Physics Letters under the title "Efficient strong field THz generation from DSTMS crys...

    2024-04-09
    Vedi traduzione
  • It is said that laser additive manufacturing is good, but what is the advantage?

    When it comes to additive manufacturing, some people may not have heard of it, but when it comes to its other name: 3D printing, no one is unaware.In fact, the name 'additive manufacturing' better illustrates the essence of this processing method. From ancient times to the present, humans have put in great effort to achieve the goal of processing 'raw materials into the shapes we need'. From the S...

    2023-11-08
    Vedi traduzione
  • Lameditech of South Korea was listed on the KOSDAQ exchange on the 17th

    On June 11, 2024, Korean laser medical equipment manufacturer Lameditech successfully completed its initial public offering and was listed on the KOSDAQ exchange on the 17th.Last month, its public offering price was fixed at 16000 Korean won. In this public offering, Lameditech issued a total of 1298000 shares, raising approximately 20.8 billion Korean won. Since Lameditech's debut on KOSDAQ, as o...

    2024-06-26
    Vedi traduzione