Italiano

Outlook - Future of miniaturized lasers

485
2023-12-19 18:10:39
Vedi traduzione

The disruptive miniaturization design of fiber lasers is feeding back into the handheld laser welding market. The handheld laser welding that enters the trunk is bathed in the luster of black technology, making traditional argon arc welding and electric welding tremble.

In the early years, argon arc welding was the most commonly used thin plate welding method among our ancestors, but its drawbacks were also very obvious. The welding threshold was high, the efficiency was low, and the subsequent polishing and polishing were complex. Especially, the strong arc radiation generated was harmful to the operator's health. With the launch of miniaturized fiber lasers, the handheld laser welding market has also experienced explosive growth, and now this market has begun to take shape.

 

In the field of industrial lasers, the importance of miniaturization trends in fiber lasers is beyond doubt. We are also well aware that miniaturization has always been a turning point in every technological advancement, such as in mobile phones, computers, and semiconductors. I believe that miniaturization will also be a necessary path for the advancement of lasers. With smaller size and higher integration, it means greater portability, richer application scenarios, and greater benefits for end users.

Imagine what kind of impact the palm sized high-energy laser on Iron Man's arm would have on the entire laser manufacturing industry and even the entire technology field? To what extent will laser weapons, cutting machines, and handheld welding machines evolve? Nowadays, semiconductors and computers continue to evolve towards miniaturization. Who dares to assert that miniaturization and lightweighting of lasers are meaningless? Looking forward to breakthroughs in laser technology bringing dividends to many fields, and the future of the laser industry is promising!

Raccomandazioni correlate
  • Electron beam welding process for thick steel plate of turbine at Aachen Institute of Technology in Germany

    Researchers from the Welding Research Institute of Aachen University of Technology in Germany reported on the development of a stable welding process for electron beam welding of thick plates used in the construction of offshore wind turbines. The relevant research results were published in Materials Science and Engineering Technology under the title "Development of a robust welding process for el...

    2024-07-09
    Vedi traduzione
  • Improved spectrometer color filter array for software calibration without the need for laser

    Hackaday will launch cool projects that may stimulate others to expand and enhance it, and even move in a completely new direction. This is the way the most advanced technology continues to evolve. This DIY spectrometer project is a great example of this spirit. It comes from Michael Prathofer, who was inspired by Les Wright's PySpectrometer, a simple device pieced together by a pocket spectrom...

    2024-05-28
    Vedi traduzione
  • Hamamatsu Photonics completes construction of new factory area

    Recently, Hamamatsu Photonics in Japan completed the construction of a new building at Miyakoda Manufacturing Co., Ltd. in Hamami ku, Hamamatsu City. The completion ceremony was held on July 29th, and the factory will start full production in November 2024, increasing overall production capacity by 2.5 times.Source: Hamamatsu PhotonicsIt is reported that Hamamatsu Photonics focuses on the developm...

    2024-08-01
    Vedi traduzione
  • British scientists pioneered groundbreaking laser tools to help discover exoplanets

    Physicists from the University of Heriot and the University of Cambridge have developed an innovative laser system called Astrocomb, which can significantly improve the detection of exoplanets. This advanced tool can accurately measure the spectra emitted by nearby stars, which fluctuate due to the gravitational influence of orbiting planets. It is expected that this technology will enhance resear...

    2024-04-02
    Vedi traduzione
  • The University of California has developed a pioneering chip that can simultaneously carry lasers and photonic waveguides

    A team of computer and electrical engineers at UC Santa Barbara, in collaboration with several colleagues at Caltech and another colleague at Anello Photonics, has developed a first-of-its-kind chip that can carry both laser and photonic waveguides. In a paper published in the journal Nature, the team describes how they made the chip and how it worked during testing.With the advent of integrated c...

    2023-08-10
    Vedi traduzione