Italiano

Progress in Research on Transparent Ceramics for 3D Printing Laser Illumination at Shanghai Institute of Optics and Mechanics

856
2023-10-17 14:59:35
Vedi traduzione

It is reported that the Research Center for Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made progress in the research of additive manufacturing (3D printing) transparent ceramics for laser illumination.

Recently, the Research Center for Infrared Optical Materials of the Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, has made progress in the research of additive manufacturing (3D printing) transparent ceramics for laser illumination. This work achieved 3D printing of high-density cerium activated lutetium aluminum garnet (LuAG: Ce) ceramics for laser illumination using digital light processing printing technology (DLP). Laser illuminated transparent ceramics with complex geometric structures were manufactured using 3D printing technology, breaking through the limitations of traditional ceramic molding techniques. The relevant research results are titled 3D Printing of LuAG: Ce Transparent Ceramics for Laser driven Lighting and published in Ceramics International.

Laser lighting systems can achieve high output efficiency (100-1000 times that of light-emitting diodes) at high power densities, allowing laser driven lighting systems to provide advantages for future solid-state lighting, such as high brightness, compact size, and directional lighting. However, traditional preparation processes can only produce simple geometric shapes, which cannot meet the needs of laser driven solid-state lighting devices with complex optical structures. 3D printing technology can achieve rapid mold free manufacturing, and all components can be digitally designed, bringing important possibilities to the field of luminescent transparent ceramic manufacturing.

Researchers have developed a photocurable ceramic ink for DLP, which is used to manufacture laser driven illumination cerium activated lutetium aluminum garnet (LuAG: Ce) luminescent transparent ceramic components with high printing resolution. The ink used for DLP printing has a solid content of up to 50 vol% and excellent shear thinning performance. The study introduced luminescent dyes into DLP ink to reduce the excessive curing width effect caused by the scattering of ultraviolet light by ceramic powder. Researching the use of DLP 3D printing method to manufacture LuAG: Ce ceramic bodies with customizable centimeter level complex 3D geometric shapes.

After sintering, the relative density of 3D printed ceramic components reached 96.4% and exhibited excellent light transmittance (about 40%). Laser excitation experiments have confirmed that the 3D printed LuAG: Ce transparent ceramics have a high laser flux threshold (19.22 W mm-2), which is related to their unique microchannel structure on the surface. The experiment shows that the application of LuAG: Ce LTCs 3D printing technology with free geometric structure design and high laser flux threshold provides a more efficient and reliable solution for high-power laser driven lighting.

Figure 1. (a) Schematic diagram of DLP 3D printed transparent ceramic body; Printed photos of LuAG: Ce ceramic bodies: (b) honeycomb, (c) minimum surface, (d) super hemisphere, and (e) different sizes of super hemisphere. (f) 3D printed sintering process diagram of LTC; (g) Laser lighting device; (h) Polished 3D printed LTC placed on the letter "SIOM" under sunlight; (i) Transmittance spectrum; (j) Sintered ultra hemispherical 3D printed LTC encapsulated in LD lighting chips.

Figure 2. (a) Experimental schematic diagram for testing curing thickness and curing width; (b) SEM images and particle size distribution of ceramic powders (illustrated); (c) The rheological behavior of printable ceramics with a solid content of 50 Vol.%; (d) The relationship between the curing depth of methyl orange ink with different concentrations and the dose of ultraviolet radiation; (e) The relationship between the curing width of different concentrations of methyl orange ink and the ultraviolet radiation dose is shown in the following photos, which correspond to the curing conditions of different concentrations of methyl orange ink; (f) 3D printing of green body layer structure.

Figure 3. The microstructure evolution of the printed body during drying at 100 ° C, pre sintering at 1200 ° C, vacuum sintering at 1800 ° C, and cross section heat treatment after vacuum sintering. (e) The thermally etched transparent ceramic surface after polishing and elemental mapping.

Figure 4. Laser lighting performance and packaging application of LuAG: Ce ceramics.

Source: Shanghai Institute of Optics and Precision Machinery

Raccomandazioni correlate
  • NKT Photonics utilizes fiber lasers to achieve deep space communication links

    On July 7, the European Space Agency (ESA), established Europe’s first deep-space optical communication link with NASA’s Psyche mission using a high-power fiber laser system supplied by NKT Photonics, a subsidiary of Hamamatsu.NKT’s announcement stated, “This achievement, conducted with NASA/JPL’s Deep Space Optical Communications (DSOC) demonstrator, marks a significant leap forward in high-data-...

    07-21
    Vedi traduzione
  • The "white" laser device from startup Superlight Photonics will completely transform imaging

    Superlight Photonics, a start-up company headquartered in Enshurd, has developed a broadband laser chip that can replace the bulky and power consuming technology currently used in advanced imaging and metering equipment.This idea suddenly appeared in his mind, while moving his other belongings from Germany to his new home in Enschede. During his doctoral research at the Max Planck Institute of Mul...

    2023-10-28
    Vedi traduzione
  • Laserline introduces the first blue 4 kW laser

    Laserline will once again showcase its latest laser systems for joining and deposition welding at this year's Welding & Cutting show in Hall 5. This time the focus is on the world's first blue diode laser with an output power of 4 kW, which is said to have been developed for processing copper components.Its 445 nanometer wavelength is absorbed by copper and copper alloys, which is five t...

    2023-09-06
    Vedi traduzione
  • Dublin City University has successfully tested the laser components of the next generation space navigation atomic clock

    The team collaborated with Eblana Photonics and Enlightra to showcase for the first time a new caliber laser, which will enable atomic clocks to be more efficient and compact for future satellite missions.This innovation addresses the key needs identified by the European Space Agency, which is the leading organization for the next generation of space navigation systems. This work was recently publ...

    2023-09-22
    Vedi traduzione
  • Researchers Obtaining Scientific Returns from Raman Spectroscopy for External Bioexploration Using Lasers

    We investigated the potential of laser selection in a wide optical range from ultraviolet to visible light, and then to infrared (excitation wavelengths of 325, 532, 785, and 1064 nm), in order to combine and analyze extreme microorganisms related to Earth (such as Cryptomeria elegans, cold floating nematodes, and circular green algae), carbon water compound molecules, as well as simulated mineral...

    2023-10-23
    Vedi traduzione