Italiano

UK to Build World's Largest Power Laser: Accelerating the Use of Nuclear Fusion and Promising to Obtain Clean Energy

886
2023-10-09 14:39:31
Vedi traduzione

According to reports, British scientists will build the world's largest power laser. They hope that this £ 85 million (approximately $103 million) device can accelerate the use of nuclear fusion and potentially obtain clean energy, which is inexhaustible.


According to the report, the "Vulcan" 20-20 laser will be built in Havel, Oxfordshire, and it will produce a laser brightness that is 24 times the brightness of the strongest sunlight.

A single laser pulse will generate power equivalent to the power generated by the entire British National Power Company, but it lasts less than 1 trillion millionths of a second and only focuses on a target with a diameter of a few micrometers. This laser is expected to be completed by 2029 and will be used to test methods for generating energy through nuclear fusion. Generating energy through nuclear fusion is a dream goal for physicists.

Scientists at other facilities, mainly the Lawrence Livermore National Laboratory in California, USA, are already using high-power lasers to fuse hydrogen atoms together. This can generate helium and energy, reflecting the reactions occurring inside the sun. The latest research results from Lawrence Livermore National Laboratory suggest that the energy obtained from this process may exceed the energy invested in it. However, in order to be commercially viable, the efficiency of this process must be greatly improved.

According to reports, the "Vulcan" 20-20 laser will be used to study basic physics, especially for researchers to explore the so-called "shock ignition".

Generally speaking, a fuel particle the size of a pepper - composed of two hydrogen isotopes, deuterium and tritium - is placed in a plastic capsule. The laser beam transforms the capsule into a plasma, causing it to rapidly expand. This causes fuel particles to be crushed to 30 times their original size in one billionth of a second. The pressure reaches 6 times the internal pressure of the sun. If everything goes smoothly, the fuel will "ignite" at a temperature of around 100 million degrees Celsius, triggering a controllable and energy generating fusion reaction.

Physicists will use the "Vulcan" 20-20 laser to observe different parts of this process. The aim is to test some ideas that may be used in the future to build experimental power stations, said Robbie Scott, a plasma physicist at the UK Council for Science and Technology Equipment.

According to the report, one challenge is to study how to use a series of laser beams to evenly crush a fuel particle from all directions simultaneously. In a full-scale power plant, this achievement may take up to 10 times a second to achieve.

The "Vulcan" 20-20 laser will also be used in "laboratory astrophysics", allowing scientists to simulate conditions in phenomena such as supernovae. A supernova is a violent explosion experienced by certain stars towards the end of their evolution.

It may also be used to convert light into matter. This can be achieved by colliding photons, creating electron and positron pairs. These matter and antimatter particles are believed to have been generated around neutron stars in distant space, but we have almost no idea how they formed.

Alex Robinson, also from the UK Council on Science and Technology Equipment, said, "If you could use a high-power laser beam to create these electron and positron pairs, you might be able to understand how this happened. In fact, there is no other scientific device that can make you do this.

According to reports, the "Vulcan" 20-20 laser will be built at the UK Science and Technology Equipment Council Center Laser Facility, which is part of the Rutherford Appleton Laboratory. The first phase of the project has just begun. The UK government supported research funding agency, the UK Research and Innovation Agency, provided £ 85 million for the central laser device.

The "Huoshen" 20-20 laser will produce a main laser line with a power of 20 petawatts, and in addition, 8 high-energy laser lines will be produced. This will make it the world's largest power laser.

Professor Mark Thomson from the UK Council for Science and Technology Equipment said: 'The Vulcan 20-20 project will put the central laser device at the forefront of high-power laser science and make new experiments in key areas such as renewable energy research possible.'

Source: Laser Manufacturing Network

Raccomandazioni correlate
  • Sweden's powerful laser system generates ultra short laser pulses

    For the first time, researchers at Umeå University, Sweden, have demonstrated the full capabilities of their large-scale laser facility. The team reports generating a combination of ultrashort laser pulses, extreme peak power, and precisely controlled waveforms that make it possible to explore the fastest processes in nature.Umeå’s laser is 11 m long and generates very short pulses László Vei...

    08-20
    Vedi traduzione
  • Laser based ultra precision gas measurement technology

    Laser gas analysis can achieve high sensitivity and selectivity in gas detection. The multi-component capability and wide dynamic range of this detection method help analyze gas mixtures with a wide concentration range. Due to the fact that this method does not require sample preparation or pre concentration, it is easy to adopt in the laboratory or industry.Gas analysis is crucial for determining...

    2024-01-03
    Vedi traduzione
  • Dublin City University has successfully tested the laser components of the next generation space navigation atomic clock

    The team collaborated with Eblana Photonics and Enlightra to showcase for the first time a new caliber laser, which will enable atomic clocks to be more efficient and compact for future satellite missions.This innovation addresses the key needs identified by the European Space Agency, which is the leading organization for the next generation of space navigation systems. This work was recently publ...

    2023-09-22
    Vedi traduzione
  • The global laser technology market is expected to reach 29.5 billion US dollars by 2029

    Recently, Markets And Markets released a five-year assessment report on the global laser industry. According to the report, the global laser technology market is expected to reach $20 billion by 2024 and is projected to reach $29.5 billion by 2029, with a compound annual growth rate of 8.0% during the forecast period.Global Laser Technology Market ForecastThe reasons for market growth include: the...

    2024-07-25
    Vedi traduzione
  • Omnitron Announces Partnership with Silex Microsystems to Mass Produce MEMS Scanning Mirrors for LiDAR

    According to reports, Omnitron Sensors, a pioneer in the development of MEMS sensing technology for large-scale and low-cost markets, recently announced that it will collaborate with Silex Microsystems, a subsidiary of Semielectronics, to mass produce MEMS scanning mirrors for LiDAR.Eric Aguilar, co-founder and CEO of Omnitron Sensors, said, "We have noticed a huge demand from manufacturers of adv...

    2023-09-19
    Vedi traduzione