Italiano

The University of Rochester has received nearly $18 million to build the world's highest power laser system

403
2023-09-28 17:28:50
Vedi traduzione

After receiving a $14.9 million contract from the US Department of Defense (DOD) last month to study the pulse laser effect, the University of Rochester recently received nearly $18 million in funding from the National Science Foundation (NSF) for the key technology design and prototype of the EP-OPAL, also known as the OMEGA EP coupled optical parametric amplifier line (OPAL).

EP-OPAL is a new facility dedicated to studying the interaction between ultra-high intensity lasers and matter. The University of Rochester pointed out that the facility can be built in the Laboratory for Laser Energy (LLE) after completing the design project.

The use of high-intensity lasers has made scientific work possible in fields ranging from plasma science to particle acceleration, laboratory astrophysics to laser driven nuclear physics. Nowadays, these jobs have also brought countless scientific, medical, commercial, and industrial applications.

The National Science Foundation (NSF) of the United States has provided funding to the University of Rochester and collaborating institutions for the design and production of prototypes for key technologies. The joint main researchers for this project include Jonathan Zuegel and Antonio Di Piazza from the University of Rochester, Eva Zurek from the University of Buffalo, Franklin Dollar from the University of California, Irvine, and Ani Apahamian from the University of Notre Dame in Australia.

The OMEGA laser facility at the Laser Energy Laboratory (LLE) of the University of Rochester currently has two major laser devices, Omega and Omega EP, available for use by researchers from around the world. According to the design plan, EP-OPAL will next add two of the world's most powerful lasers and utilize the capabilities of high-energy OMEGA EP lasers. Its design will be guided by the most urgent scientific issues that can be solved using this laser system in four cutting-edge research fields, namely:

- Particle Acceleration and Advanced Light Sources (PAALS)
-High Field Physics and Quantum Electrodynamics (HFP/QED)
-Astrophysics and Laboratory Planetary Physics (LAPP)
-Laser Driven Nuclear Physics (LDNP)

According to Jonathan Zuegel, the chief researcher of LLE, a successful EP-OPAL design will make it possible for the world's highest power laser system. He described: "Its two laser beams are combined to emit a laser pulse with a peak power close to the total power incident by the sun on the Earth's surface, but focused on an area smaller than the cross-sectional area of human hair

The main purpose of this project is to:
-Design EP OPAL facilities (including lasers, experimental systems, and diagnostics) to address a range of eye-catching scientific issues
-The shooting cycle time of the designed and prototype high-energy laser amplifier is a few minutes
- Design and prototype large-scale optical production and characterization systems

 

The EP-OPAL facility is envisioned as a learning environment and a hub for various scientific networks, providing opportunities for basic research, innovation, and social benefits. This project utilizes the professional knowledge, resources, and talents of collaborating institutions, including the University of California Buffalo, Irvine University, Notre Dame University of Maryland, University of Michigan, Ohio State University, and Plymouth Grating Laboratory. This funding is part of the National Science Foundation's Mid Scale Research Infrastructure 1 program.

Last month, the Laser Energy Laboratory at the University of Rochester signed a $14.9 million contract with the Ministry of Defense to study the effects of pulsed lasers. According to the university, this funding is approximately twice the annual funding received from the Ministry of Defense in recent years. In addition to supporting the scientific tasks of the Laser Energy Laboratory at the University of Rochester, this funding will help promote technology and talent development to support the widespread use of laser based directed energy systems.

The Laser Energy Laboratory at the University of Rochester was established in 1970 and is currently the largest university research center funded by the United States Department of Energy (DOE). As a nationally funded research facility, LLE has been conducting a series of scientific experiments and has received widespread international praise for its significant contributions to the US Department of Energy's inertial confinement fusion and high-energy density physics projects. In September last year, the Laser Energy Laboratory at the University of Rochester began a large-scale expansion project, which cost a total of $42 million and will build a new office and laboratory building with a total area of 66000 square feet. It will be directly connected to LLE's current laboratory in Brighton, New York, and is expected to be officially completed in 2024.

Reprinted from:ofweek

Raccomandazioni correlate
  • Focused Energy purchases two world-class high-energy lasers

    Recently, Focused Energy, a well-known foreign fusion energy startup, announced that it has officially signed an agreement to purchase two of the world's top high-energy lasers. These two large lasers will be deployed in the company's upcoming factory in the San Francisco Bay Area in the next two years.Scott Mercer, CEO of Focused Energy, stated, "These lasers are currently the highest average pow...

    2024-12-25
    Vedi traduzione
  • Invest 13 million euros! Tongkuai opens its Southeast European headquarters in Hungary

    Recently, German company Tongkuai invested 13 million euros to open its headquarters in Southeast Europe in Hungary and jointly established a digital network demonstration factory in the Gothler Business Park. Its business focuses on machine tools for digital manufacturing and laser sales for batteries and other automotive components.Nicola Leibinger Kamm ü ller, CEO of Tongkuai, said, "It is...

    2023-09-16
    Vedi traduzione
  • Natural Communication: Oxide Dispersion Enhancement for High Performance 3D Printing of Pure Copper

    The laser additive manufacturing technology of pure copper (Cu) with complex geometric shapes has opened up vast opportunities for the development of microelectronic and telecommunications functional devices. However, laser forming of high-density pure copper remains a challenge.Recently, the forefront of additive manufacturing technology has noticed a joint report by the University of Hong Kong, ...

    04-11
    Vedi traduzione
  • Guangfeng Technology releases the world's first versatile laser headlights

    On April 25th, 2024, the Beijing International Auto Show officially opened, and Guangfeng Technology released the world's first ALL-IN-ONE all-around laser headlights.This headlight is the first to integrate multiple functions such as high beam ADB headlights, color changing temperature headlights, fog lights, ground information display, car cinema, etc. into a small volume headlight module, achie...

    2024-04-29
    Vedi traduzione
  • Comparison of Blue and Infrared Wavelength in Pure Nickel Laser Deep Fusion Welding Process

    It is reported that researchers from BIAS Bremer Institution f ü r angewandte Strahltechnik GmbH in Germany have reported a comparative study of laser deep penetration welding processes for pure nickel using blue and infrared light wavelengths. The related research was published in Welding in the World under the title "Process comparison of laser deep penetration welding in pure nickel using blue ...

    2024-08-13
    Vedi traduzione