Italiano

Osram has received over 300 million euros in German investment to develop next-generation optoelectronic semiconductor technology

363
2023-09-25 16:02:52
Vedi traduzione

Recently, ams Osram, a developer of smart sensors and transmitters, announced that it expects to receive over 300 million euros in funding from the German Federal Government and the Free State of Bavaria over the next five years.

This funding is aimed at promoting Osram's development of the next generation optoelectronic semiconductor technology in Regensburg, Germany. The IPCEI funding in this batch of plans (an "important project of common interest in Europe") will support the company's independent investment, research, and development of innovative optoelectronic components there.

(Image source: ams Osram)

In its recent announcement, Osram stated that it is "working to strengthen its development and manufacturing base in Regensburg for future investments". On September 18th, at a related event of the Federal Ministry of Economic Affairs and Climate Action in Germany, the company introduced its project initiated within the scope of IPCEI microelectronics and communication technology.

For the planned public funding, the German Federal Ministry of Economic Affairs and Climate Action emphasizes the significant importance of the project within Europe and supports cooperation with the Bavarian Ministry of Economic Affairs, Regional Development, and Energy for related investments. The statement stated: "300 million euros will mainly be invested in research and development activities for innovative optoelectronic semiconductors and their manufacturing processes, thereby creating 400 new high-tech jobs.

In addition, Osram will also invest in new clean rooms and laboratory facilities for research, development, and experimental production. These facilities will be used for applications such as UV-C LEDs for disinfection, near-infrared emitters for autonomous LiDAR, and applications in the context of Industry 4.0.

Another special focus will be on microLEDs for new types of displays. Osram pointed out that "automation and artificial intelligence play an important role in Regensburg, enabling us to open up Xintiandi in production facilities." The first 8-inch wafer production pilot assembly line is currently under construction, in order to launch cost-effective mass production of highly innovative microLEDs in the near future.

Aldo Kamper, CEO of Osram, said, "By expanding our development activities in the field of optoelectronic semiconductors, we can create space for innovation and accelerate the time to market of our products. At the same time, our investment is a clear commitment to Regensburg as an industrial center, Bavaria as a high-tech base, and Europe as a breeding ground for innovation.

He added, "In Regensburg, we create new, energy-efficient products and production processes to drive digitization, thereby supporting European green agreements and European autonomy in the semiconductor industry. Under our future oriented 'Rebuild the Base' plan, we will continue to establish our market leading core competitiveness and shape the future of the semiconductor market from this Bavarian city.

Hubert Aiwanger, Minister of Economic Affairs of Bavaria, said, "Osram represents the high-tech manufacturing in Regensburg. As the Bavarian government, we are interested in participating in the financing of the IPCEI project. This is fully in line with our intention to further expand Bavaria as a top international base in the semiconductor industry. Every euro has received good investment and will create new job opportunities in a highly innovative environment.

Source: Ofweek

Raccomandazioni correlate
  • Researchers use laser doping to enhance the oxidation of IBC solar cells

    Researchers from the International Solar Research Center at Konstanz and Delft University of Technology have discovered a method to pattern the back end of a cross finger rear contact battery, improving its efficiency by making certain parts of the solar cell thicker.Researchers have developed a new technology that enhances oxidation in selected areas by patterning the back or back of IBC solar ce...

    2024-02-20
    Vedi traduzione
  • The LANL Laboratory in the United States has achieved a light source that generates a circularly polarized single photon stream using a quantum light emitter

    Los Alamos National Laboratory (LANL) has developed a method for a quantum light emitter that stacks two different atomically thin materials together to achieve a light source that produces a stream of circularly polarized single photons. These light sources can in turn be used for a variety of quantum information and communication applications.According to Los Alamos researcher Han Htoon, the wor...

    2023-09-02
    Vedi traduzione
  • Launching the world's strongest laser at a cost of 320 million euros

    Beijing, April 1st (Reporter Liu Xia) - The world's most powerful laser has been activated recently. On March 31st, the Physicist Organization Network reported that the system can enable laser pulses to reach a peak of 10 terawatts (1 terawatt=100 terawatts=1015 watts) within 1 femtosecond (1000 trillions of a second), which is expected to promote revolutionary progress in multiple fi...

    2024-04-03
    Vedi traduzione
  • Micro active vortex laser

    Recently, Dong Yibo, from the Photonic Chip Research Institute of Shanghai University of Technology, published his research findings titled "Nanoprinted Diffractive Layer Integrated Vertical Cavity Surface Emitting Vortex Lasers with Scalable Topological Charge" as the first author in the internationally renowned journal Nano Letters.This achievement was jointly completed by the team of academicia...

    2023-10-24
    Vedi traduzione
  • Toronto research has discovered 21 new sources of organic solid-state lasers

    Organic solid-state lasers (OSLs) are expected to achieve widespread applications due to their flexibility, tunability, and efficiency. However, they are difficult to manufacture and require over 150.000 possible experiments to find successful new materials, and discovering them will be a work of several lifetimes. In fact, according to data from the University of Toronto in Canada, only 10-20 new...

    2024-05-22
    Vedi traduzione