Italiano

Defects and solutions that are prone to occur when laser welding square shell battery explosion-proof valves for power batteries

832
2023-09-15 14:27:20
Vedi traduzione

For example, the commonly used square shell battery cells for power batteries include laser welding of cover explosion-proof valves, laser welding of pole columns, and laser welding of cover plates and shells. During the process of laser welding of aluminum alloy, it is easy to generate unqualified phenomena such as explosion points, pores, welding cracks, excessive depth and width of fusion. 

Therefore, it is necessary to define the impact of unqualified items, analyze the consequences (degree of harm) of the impact, understand the mechanism of laser welding unqualified, and take effective measures to improve the quality and consistency of laser welding in the mass production stage, improve the output of the production line, and reduce welding unqualified, Reduce the cost of waste materials.

Common failures in sealing welding of battery explosion-proof valves
Explosion proof valve is a circular thin sheet of pure aluminum (1060 or 3003) with a thickness between 0.08 and 0.1 mm. When using infrared fiber laser welding, due to the high reflectivity of solid aluminum material towards infrared laser and its thin material, if the welding process is not appropriate, the explosion-proof valve is prone to overheating, perforation or explosion during the laser welding process, causing it to lose its pressure relief and explosion-proof function.

Potential failure 1: Over burning/melting through
Reason: When using infrared laser welding, due to the high reflectivity of the solid aluminum alloy surface to infrared laser, higher laser power is often used. However, the thickness of the explosion-proof valve from 0.08 to 0.1 mm is too small, making it easy to melt through.
Solution suggestion: Select appropriate welding process parameters to achieve a steep increase and slow decrease in laser power and control heat input. Adopting a waveform with a pre peak and exponential attenuation can improve the absorption rate of aluminum material to laser, while the subsequent exponential attenuation wave can prevent perforation caused by high power density.

Potential Failure 2: Burst Hole
Cause: Gas escape from the molten pool during laser welding.
Source of gas:
1. The power battery cover plate and explosion-proof valve are thin stamping parts that are prone to residual lubricating oil and cleaning fluid after processing. Under the action of high-power density laser, these liquids are easily vaporized and float up to the surface of the molten pool, causing a large amount of splashing and leaving pits on the surface of the weld, forming explosive holes.

2. The width to thickness ratio of explosion-proof valves can generally reach around 30, and during welding, it is easy to cause thermal deformation and warping due to heating, resulting in a large amount of air in the assembly gap between the explosion-proof valve and the top cover. During welding, these residual air expands and sprays out the molten pool, forming explosive holes.

Suggested solution: 
1. Thoroughly clean the cover plate and explosion-proof valve before welding; 
2) Optimize the welding process by using pre spot welding and seam welding, and prevent warping and deformation through spot welding fixation to reduce blast hole defects.

In the laser welding of power square shell batteries, welding process technicians will select appropriate laser and welding process parameters based on the customer's battery material, shape, thickness, tensile requirements, etc., including welding speed, waveform, peak value, welding head tilt angle, etc. to set reasonable welding process parameters to ensure that the final welding effect meets the requirements of the power battery manufacturer.

Source: Shangtuo Laser

Raccomandazioni correlate
  • Shanghai Institute of Optics and Fine Mechanics has made progress in synchronously pumped ultrafast Raman fiber lasers

    Recently, the research team led by Zhou Jiaqi from the Aerospace Laser Technology and Systems Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the study of synchronously pumped ultrafast Raman fiber lasers. The related achievements were published in Optics Express under the title "Revealing influence of timing jitter on ultra fast...

    06-07
    Vedi traduzione
  • Comparative Study of Resistance Spot Welding and Laser Spot Welding of Ultra High Strength Steel for Vehicles

    Researchers from Annamarai University in India and South Ural State University in Russia reported a comparative study of resistance spot welding and laser spot welding of ultra-high strength steel for automobiles. The related research was published in The International Journal of Lightweight Materials and Manufacturing under the title "A comparative study on resistance spot and laser beam spot wel...

    2024-09-05
    Vedi traduzione
  • Coherent launches 12 kW sheet metal laser cutting processing head

    Recently, Coherent, an industrial laser technology giant, announced the launch of a new 2D laser cutting head - CUT12, which combines excellent performance, high versatility, and profound value for the global flat cutting market. Image source: CoherentThe CUT12 sheet metal laser cutting processing head is perfectly compatible with fiber lasers in the power range of 4 kW-12 kW (continuous wave),...

    2024-10-29
    Vedi traduzione
  • Scientists at St. Andrews University have made significant breakthroughs in compact laser research

    Scientists at St. Andrews University have made significant breakthroughs in compact laser research after decades of hard work.Laser is widely used in fields such as communication, medicine, measurement, manufacturing, and measurement around the world. They are used to transmit information on the internet, for medical purposes, and even in facial scanners on mobile phones. Most of these lasers are...

    2023-10-04
    Vedi traduzione
  • The UK government plans £ 10.5 million to support laser wire feeding

    On the first day of the 2025 Paris Air Show, the UK government announced a £ 250 million investment to support sustainable aerospace programs, with £ 48.5 million earmarked for funding additive manufacturing projects led by Airbus and GKN Aerospace. Among them, £ 10.5 million will be injected into the GKN Integrated System Level Aerospace Structure Assembly (ISLAA) program, with the aim of utilizi...

    06-23
    Vedi traduzione