Italiano

Inertia Enterprises focuses on the commercialization of fusion energy

1269
2025-08-29 10:50:34
Vedi traduzione

Inertia Enterprises, a private fusion power start-up, based in San Francisco, CA., has announced the formation of the company, co-founded by fusion energy pioneer Dr. Andrea “Annie” Kritcher, fusion power plant designer Prof. Mike Dunne, and successful tech entrepreneur, Jeff Lawson.

Underpinned by this team of experts spanning science, engineering, technology and business, Inertia stated that it is “commercializing the only approach to fusion that has successfully achieved ignition and energy gain – demonstrated at the U.S. Department of Energy’s (DOE) Lawrence Livermore National Laboratory (LLNL)”.

Inertia’s strategy is to take the most direct, scientifically proven path from what is working today at LLNL toward commercial energy. The company is developing a new generation of mass-produced, low-cost lasers and fuel targets that leverage the scientific result of fusion ignition.

 



Inertia co-founders: Annie Kritcher, Jeff Lawson, and Mike Dunne


The company has partnered with LLNL on a substantial and multifaceted relationship, including research agreements, to advance low-cost, mass-production target design and fabrication. The company has licensed nearly 200 patents covering multiple technologies critical to achieve fusion ignition, and has reached a first-of-its-kind arrangement to advance public-private collaboration and technology transfer, allowing Dr. Kritcher to be a co-founder of Inertia.

“The goal of delivering limitless fusion energy has attracted tens of billions of dollars in government investment and decades of research, culminating in the achievement of ignition just a couple of years ago,” said Jeff Lawson, Inertia founder and CEO. “Standing on the shoulders of giants, we see a clear path from big science to commercial energy by scaling up the industrial base to the scale needed for laser inertial fusion.”

In December 2022, Dr. Kritcher made history with the team at LLNL by conducting the first controlled fusion experiment to achieve fusion ignition, also known as scientific energy breakeven, meaning it produced more energy from fusion than the laser energy used to drive it. This unprecedented achievement laid the foundation for Inertia to bring fusion to commercial scale.

The founders

Inertia Enterprises is founded by three established innovators in their respective fusion-related fields:

Kritcher has been the lead designer of these LLNL experiments since 2019, responsible for the physics design that successfully achieved ignition.
Lawson was the founder and CEO of tech platform Twilio, which he grew from inception to over $4B in revenue, a public listing on the New York Stock Exchange, and a global footprint of over 300,000 customers.
Dunne is a professor of Photon Science at Stanford University and an Associate Lab Director of the SLAC National Accelerator Laboratory, where he leads a preeminent, multi-billion-dollar research facility using high power lasers that hit targets at kHz rates. Previously, Dunne led the five-year program at LLNL to deliver an industry-validated power plant design based on the LLNL ignition approach, assembling a team of over seventy vendors, utility companies, national labs and universities.
Inertia’s statement added that the startup “is positioned to transform the field by combining the proven science from LLNL with innovative technology, leveraging Dr. Kritcher’s specialized expertise in fuel-target design, Professor Dunne’s leadership in integrated fusion power plant development and multi-billion-dollar laser facility advancement, and Lawson’s two decades of start-up and business acumen—ensuring the partnerships and expertise needed to move this breakthrough toward commercialization.”

Kritcher commented, “There’s a lot of excitement around various potential pathways to fusion right now, but only one approach has delivered energy gain. This result is a monumental step for limitless clean energy.” Fusion energy offers a technological breakthrough unseen in American history since modern inventions like the internet, telephone, or light bulb. Fusion energy is the process where two light atoms combine, or “fuse” to form a larger atom, releasing a massive amount of energy.

“We’re at a crucial tipping point. 2022 proved that controlled fusion ignition is possible, but current lasers, like the one at LLNL, which is the size of three football fields, are not suitable for commercialization,” said Prof. Dunne. “But with modern laser technologies, we can combine the transformative results from Annie and the team with high-powered laser technology from the semiconductor industry to convert decades of research into a reality.”

Source: optics.org

Raccomandazioni correlate
  • Zhejiang University has prepared ultra strong and tough 3D printing elastic materials

    Professor Xie Tao and researcher Wu Jingjun from the School of Chemical Engineering and Biotechnology at Zhejiang University have designed a new type of photosensitive resin and used it to create a "super rubber band" that can stretch to over 9 times its own length and lift 10 kilograms of objects with a "body" with a diameter of 1 millimeter through 3D printing. The relevant results were recently...

    2024-07-06
    Vedi traduzione
  • Researchers have created the first organic semiconductor laser that can be operated without the need for a separate light source

    Researchers at the University of St. Andrews in Scotland have manufactured the first organic semiconductor laser to operate without the need for a separate light source - which has proven to be extremely challenging. The new all electric driven laser is more compact than previous devices and operates in the visible light region of the electromagnetic spectrum. Therefore, its developers stated that...

    2023-11-15
    Vedi traduzione
  • The LANL Laboratory in the United States has achieved a light source that generates a circularly polarized single photon stream using a quantum light emitter

    Los Alamos National Laboratory (LANL) has developed a method for a quantum light emitter that stacks two different atomically thin materials together to achieve a light source that produces a stream of circularly polarized single photons. These light sources can in turn be used for a variety of quantum information and communication applications.According to Los Alamos researcher Han Htoon, the wor...

    2023-09-02
    Vedi traduzione
  • Renishao provides customized laser ruler solutions for ASML

    Renishao collaborated with ASML to meet a range of strict manufacturing and performance requirements and developed a differential interferometer system for providing direct position feedback in metrology applications. Customized encoder solutions can achieve step wise improvements in speed and throughput.Modern semiconductor technology relies on precise control of various processes used in integra...

    2023-12-14
    Vedi traduzione
  • Research progress and prospects of CFRP laser surface cleaning

    Researchers from Materials Science at Harbin Institute of Technology, Zhengzhou Research Institute at Harbin Institute of Technology, and Key Laboratory of Microsystems and Microstructure Manufacturing at Harbin Institute of Technology, Ministry of Education, reviewed and reported on the research progress of laser surface cleaning of carbon fiber reinforced polymer composites (CFRP). The relevant ...

    03-06
    Vedi traduzione