Italiano

The ECSTATIC fiber optic project worth 5.1 million euros aims to prevent bridge collapse

794
2025-08-18 10:25:32
Vedi traduzione

A new European research project is exploring whether the same fibre-optic cables that carry our internet could also serve as real-time sensors for hidden damage in infrastructure, including bridges, railways, tunnels and energy pipelines.

 


The €5.1 million ECSTATIC project, coordinated by Aston University in the UK, is trialling this breakthrough approach in a major UK city, using a heavily-used railway viaduct as its first live test site. The goal is to detect subtle structural shifts, stress, and vibrations in real time, using laser light pulses sent through fibre-optic cables already embedded right beneath our feet.

“Our aim is to create a global nervous system for critical infrastructure,” said Prof. David Webb, ECSTATIC project coordinator. “We are hoping to turn existing fiber-optic cables into a 24/7 early-warning system, detecting the tiniest tremors or stress fractures before they become catastrophic. If successful, it will be the difference between fixing a fault and cleaning up a tragedy.”

Light listens

Installing physical sensors across entire transport and energy networks would cost billions and cause major disruption. But the ECSTATIC project is taking a different route: it uses the infrastructure that’s already in place.

At the project’s first demonstration site (a major 19th-century rail viaduct carrying tens of thousands of trains per year), researchers will send ultra-precise laser pulses through buried fiber-optic cables. As trains pass overhead, the fibers subtly flex and vibrate. These movements change how the light behaves inside the cable, altering the phase and polarisation of the light, creating an optical fingerprint of the forces acting on the structure.

By measuring these changes and interpreting them using a new dual-microcomb photonic chip and AI signal processing, ECSTATIC aims to pinpoint early warning signs of damage or fatigue. Significantly, it works without interrupting internet traffic and without laying a single new cable.

“Cracks in bridges, viaducts, or tunnels don’t announce themselves; structures wear down gradually and silently, with the first signs of failure remaining invisible until it’s too late,” added Prof. Webb. “The UK and many places across Europe have hundreds of ageing railway bridges, with millions of vehicles passing under or over them each year. Many of the UK bridges date back to Victorian times, which could present a ticking time-bomb unless we take decisive steps to monitor them now.”

Preventing disasters

The need for early-warning systems is clear from recent bridge collapses in Europe that have cost lives and paralysed cities. In Italy, the Genoa Morandi Bridge disaster in 2018 killed 43 people when a 200-meter section of highway collapsed, despite internal warnings about structural risk years earlier. As recently as last year in Germany, the Carolabrücke in Dresden – a vital lifeline for the city – partially collapsed without warning. The incident severed critical utility lines, leaving parts of the city without hot water for several hours and triggering widespread transport disruption.

These events, though rare, reveal how vulnerable infrastructure can become when ageing structures are left unchecked, and how devastating the consequences can be. ECSTATIC aims to help authorities act before warning signs become disasters, by giving them better data, earlier, and without the need to install costly or disruptive new sensor systems.

With more than five billion kilometers of optical fiber installed across the globe, the potential for ECSTATIC’s technology is enormous, say its partners. If the trials in the UK prove successful, the approach could be rolled out across Europe’s transport and energy networks, enabling safer, smarter infrastructure monitoring at a fraction of the cost of traditional systems.

The project runs until July 2028. It brings together 13 partners from across Europe, including universities in Padova, L’Aquila, Chalmers, Alcalá, and West Attica, alongside industry groups Telecom Italia Sparkle, OTE Group, Nokia, Network Rail, MODUS, and Swiss SME Enlightra SARL, as well as the Greek seismology specialists NOA.

Dates for Photonics Partnership Annual Meeting 2026 announced
Photonics21, the European photonics industry platform, has announced that the Photonics Partnership Annual Meeting 2026 will take place will at the DoubleTree by Hilton Brussels City hotel on 9 & 10 June 2025. Next year’s event will focus on photonics in the next EU Framework Programme and will present the new Photonics Strategic Research and Innovation Agenda (2026) to the European Commission.

Photonics21 invites the industry in Europe to “take the opportunity to get the latest updates on the next EU Framework Programme and to network with your peers from the European photonics community.” The draft event programme as well as the link to the online registration and any further information will be published on the photonics21 website within the next months.

Source: optics.org

Raccomandazioni correlate
  • More penetrating than X-rays μ Meson imaging is expected to be advanced with high-power lasers

    μ Mesons are naturally occurring subatomic particles that can penetrate much deeper dense matter than X-rays. Therefore, μ Meson imaging can enable scientists to capture images of nuclear reactors, volcanoes, tsunamis, and hurricanes. However, this process is slow, as it occurs naturally μ The low flux of mesons requires several months of exposure time for the image.It is understood that ...

    2023-11-01
    Vedi traduzione
  • This semiconductor integrator launches laser chip and array technology

    Recently, Sivers Semiconductors, a well-known chip and integration module supplier in Sweden, announced that its subsidiary Sivers Photonics is partnering with ecosystem partners to showcase its advanced laser chip and array technology at the OFC conference in Santiago.The first on-site demonstration used Ayar Labs optical I/O and CW-WDM MSA compatible SuperNova ™ The light source is powered...

    2024-03-29
    Vedi traduzione
  • Amazemet uses Siemens Xcelerator software for scaling metal 3D printing

    Polish metal 3D printing company Amazemet uses the Xcelerator software combination from industrial manufacturing company Siemens.The spin off company of Warsaw University of Technology is using Siemens workflow management software to develop its metal powder atomizer and 3D printing post-processing equipment.Amazemet was founded in 2016, and its ultrasonic atomization device is capable of producin...

    2024-04-18
    Vedi traduzione
  • Aston receives £ 600000 to address the surge in energy needed for data centers

    A researcher from Aston University in Birmingham, UK, has received a grant of £ 625000 (approximately $850000) to help address the energy surge required for data centers.The UK’s Royal Academy of Engineering has announced the latest recipients of its fellowships which support engineers to solve a wide range of society’s challenges. Data center energy demand is described as “one of today’s most pre...

    10-24
    Vedi traduzione
  • Aerotech launches new micro hexapod sports platform

    Recently, Aerotech Inc., a global leader in precision motion control and automation, launched the HexGen HEX150-125HL miniature hexapod motion platform, a six degree of freedom (DOF) precision positioning system. This compact and cost-effective hexapod sports platform has a base diameter of 150 millimeters and a nominal height of 125 millimeters. It can achieve a minimum incremental movement of up...

    01-14
    Vedi traduzione