Italiano

ICFO launches its 13th subsidiary Shinephi for interferometric imaging

86
2025-08-11 16:12:43
Vedi traduzione

Barcelona-based photonics research center ICFO has announced the creation of its 13th Spin-off company, Shinephi. The official launch of the company was jointly made at the end of July by Dr. Roland Terborg (CEO and co-founder), Dr. Iris Cusini (CTO and co-founder) and ICREA Prof. at ICFO Valerio Pruneri (Technology Advisor and co-founder), accompanied by Dr. Silvia Carrasco, Vice Director of Innovation, Sponsored Research and Public Engagement of ICFO, and Dr. Emilià Pola, Executive Director at ICREA.

 



The Shinephi launch team


Shinephi was developed as a result of more than a decade of research conducted by the research group led by ICREA Prof. at ICFO Valerio Pruneri. The research team was trying to find solutions and tools that could be fast, sensitive, stable and versatile for imaging solutions because they repeatedly encountered the fundamental limitations of existing technologies.

Several existing metrology solutions in the market were often not sensitive and fast enough for industrial applications related to nanofabrication and the semiconductor industry. More importantly, they proved to be very difficult to integrate easily into existing systems or production lines because they tended to be typically bulky systems.

During many years of research, technology development and business incubation within ICFO’s KTT Launchpad, the team was able to develop an innovative technology that combined high sensitivity and speed with easy integration, called Lateral-shear Interferometric Microscopy, a novel form of a common-path interferometer, which has proven to outperform optical profilometers and atomic force microscopes.

Unlike traditional interferometers, which had been often bulky and sensitive to vibrations, this approach showed to be inherently stable. The goal was to transform standard microscopes into powerful metrology tools using a simple, camera-like add-on fulfilling Shinephi’s goal to make the invisible visible, easily and effectively.

Making advanced optical metrology accessible

The startup’s mission is to provide advanced optical metrology and make it accessible to companies and laboratories in the material science and semiconductor sectors, enabling them to take control over their fabrication processes, overcome the limitations of current standards and see their samples in a new light.

The founding of the company represents a significant milestone, according to CEO Roland Terborg. He said, “after more than ten years of research, technology development and business incubation at ICFO, it is amazing to finally launch Shinephi. We are taking all that scientific knowledge and turning it into a real solution for big industry problems. This is a huge moment for us, officially moving from the lab to the market.”

Shinephi’s CTO, Iris Cusini, who has a background in electronic engineering and software design for imaging systems, added, “The most exciting part is seeing our technology actually working for our first clients. Now that we have officially launched, we’re going from a cool prototype to a real product.”

Shinephi’s LIM technology and its wide-ranging applications will be essential across industries where precise measurement of microscopic height or refractive index variations are significant. Silvia Carrasco commented, “we are proud to see deep-tech innovations developed at ICFO starting the rocky path to impact society. The launch of Shinephi is a clear example of how cutting-edge photonics research, in the hands of driven ICFOnians, can evolve into impactful industrial solutions that address industrial challenges in nanofabrication and semiconductor manufacturing.”

Valerio Pruneri said, “the technology developed by the spin-off will allow foundries in the semiconductor industry, including producers of photonic integrated circuits, to measure chips and wafers with unprecedented precision and speed.”

Terborg explained the crucial role that ICFO has played in the development of Shinephi’s technology, from the research carried out within Pruneri’s group to the IP guidance and industrial connections from the KTT team: “ICFO has provided the ideal ecosystem for a deep-tech venture like ours to grow. We are optimistic about the future and eager to see the discoveries our clients will make with our technology.”

Source: optics.org

Raccomandazioni correlate
  • French researchers develop spiral lenses with optical vortex effects

    As humans stand at the forefront of a new era of space exploration, the National Laboratory of the International Space Station is taking the lead in carrying out a groundbreaking initiative that may completely change the way we understand and utilize space for research and development. In a recent development, Northrop Grumman's 20th commercial supply service mission has become an innovative light...

    2024-02-17
    Vedi traduzione
  • Scientists use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage

    Scientists at the City University of New York use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage. This technology is published in the journal Nature Nanotechnology and allows for encoding multiple bytes of data into the same nitrogen defect at multiple optical frequencies, without confusing the information content.The common laser based techn...

    2023-12-07
    Vedi traduzione
  • 85000W laser cutting machine emerged and led the world

    Recently, Pentium Laser and Shenzhen Chuangxin Laser launched the world's first 85000W laser cutting machine, once again breaking the record for the highest power in the cutting field.Zhang Qingmao, Director of the Laser Processing Committee of the Chinese Optical Society, Xu Xia, rotating CEO of Pentium Group, Cai Liang, Director of the Final Inspection Department of Pentium Laser Manufactu...

    2023-09-16
    Vedi traduzione
  • New insights into the interaction between femtosecond laser and living tissue

    The N-linear optical microscope has completely changed our ability to observe and understand complex biological processes. However, light can also harm organisms. However, little is known about the mechanisms behind the irreversible disturbances of strong light on cellular processes.To address this gap, the research teams of Hanieh Fattahi and Daniel Wehner from the Max Planck Institute for Photos...

    2024-06-07
    Vedi traduzione
  • Researchers improve laser behavior by tying laser knots

    Researchers have created a new type of laser that, despite environmental noise and manufacturing defects, still performs as expected. Technically speaking, researchers have created a topology, time, and mode-locked laser. This study has the potential to improve sensors and computing hardware.A mode-locked laser emits light with regular pulses instead of a continuous beam. Pulses can be very counta...

    2024-03-07
    Vedi traduzione