Italiano

New and Strongest Laser Born in the United States

160
2025-05-28 11:16:45
Vedi traduzione

The ZEUS laser at the University of Michigan recently achieved a breakthrough of doubling the peak power of the strongest laser in the United States through its first 2 quadrillion watt experiment. Although this instantaneous power only lasts for 25 attosecond (one billionth of a second), it exceeds the total power of the global power grid by more than a hundred times.

Karl Krushelnick, director of the G é rard Mourou Ultrafast Optics Science Center, which is affiliated with ZEUS, said, "This marks the official entry of high field strength science in the United States into unknown territories." In addition to plasma and quantum physics research, the facility's achievements will also benefit eight major fields such as healthcare and national security. As an open research platform, ZEUS has attracted 58 scientists from 22 institutions worldwide to submit experimental plans.

Professor Franklin Dollar, the leader of the first 20 quadrillion watt experiment at the University of California, Irvine, explained that "the uniqueness of ZEUS lies in its ability to decompose lasers into multiple independent light sources." His team is working to generate electron beam energy equivalent to that of a hundred meter particle accelerator, which will be 5-10 times the historical record of the facility.

John Nees (left) and laser engineer Paul Campbell (right) are working in target area 1, where the first 2 quadrillion watt user experiment will be conducted. ZEUS is now the most powerful laser in the United States

The core of the experiment lies in the innovative design of a dual laser collaborative system: one beam constructs a guiding channel, and the other beam achieves electron acceleration. Anatoly Maksimchuk, the chief engineer of the project, revealed that the team has extended the length of the helium target chamber to create a more persistent "wake field acceleration" effect of laser pulses in the plasma - when electrons chase after the decelerating laser pulses, it is like a surfer closely following the wake of a speedboat, gaining sustained kinetic acceleration.

Later this year, ZEUS will witness its iconic experiment: the collision of accelerated electrons with reverse laser pulses. In the electronic reference frame, a 3 quadrillion watt laser is equivalent to a 10 quadrillion watt pulse, which is the origin of the name "Zeva equivalent ultra short pulse system". Vyacheslav Lukin, Director of the Physics Department at NSF, pointed out that this breakthrough will drive innovation in medical technologies such as cancer treatment.

Inside this facility, which is only the size of a sports arena, there are multiple black technologies hidden: a 30 centimeter diameter titanium sapphire crystal serves as the core amplifier, and the global stock is few and far between; The pulse compression technology with a thickness of 8 microns (less than 1/10 of printing paper) breaks through the limit of energy density. John Nees, the chief engineer of the project, emphasized that the flexibility of medium-sized facilities enables them to quickly respond to new research ideas.

The upgrade path from 300 terawatts to 30 quadrillion watts is full of challenges: the titanium sapphire crystal that took four and a half years to build, and the carbon deposition problem caused by molecular residues in the vacuum chamber, have all made the team walk on thin ice. Since its launch in October 2023, ZEUS has completed 11 cutting-edge experiments and will continue to upgrade towards full power in the coming year. As NSF has stated, this' national research heavyweight 'is reclaiming America's dominant position in the field of strong lasers.

Source: Yangtze River Delta Laser Alliance

Raccomandazioni correlate
  • The fiber laser system overcomes outdated issues through a PC based EtherCAT control platform

    In order to maintain relevance and success, companies with a long history must respect their past while not ignoring the future. This is the method adopted by Cincinnati Corporation (CI), a metal processing machinery manufacturer based in Harrison, Ohio, since its establishment in the late 1890s.The company is carefully considering technological changes. Incorrect selection of control hardware, ne...

    2024-05-25
    Vedi traduzione
  • Scientists use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage

    Scientists at the City University of New York use tiny nitrogen defects in the atomic structure of diamonds as "color centers" to write data for storage. This technology is published in the journal Nature Nanotechnology and allows for encoding multiple bytes of data into the same nitrogen defect at multiple optical frequencies, without confusing the information content.The common laser based techn...

    2023-12-07
    Vedi traduzione
  • Research has found that inorganic perovskite materials are easy to prepare and process, making them suitable for manufacturing lasers

    According to research from Busan National University, inorganic perovskite materials are easy to prepare and process, making them suitable for manufacturing lasers.The perovskite of interest is CsPbBr3, which must form "nanosheets" within the specific structure invented by the Busan team to obtain sufficient laser gain.It is not that the laser has been achieved, as the research project aims to cha...

    2024-01-04
    Vedi traduzione
  • Bodor Laser: Laser Cutters Rank First in Global Sales for Six Consecutive Years

    On February 27, at Bodor Laser's global headquarters base in Licheng District, Jinan City, three automated production lines were operating at full capacity, struggling to meet the overwhelming demand. Lu Guohao, Secretary of the Board and Director of the President's Office at Bodor Laser, revealed that the company's laser cutter shipments exceeded 8,000 units in 2024, securing the top spot in glob...

    03-10
    Vedi traduzione
  • Breakthrough in Light Manipulation: Revealing New Finite Barrier Bound States

    Exploring the propagation and localization of waves in various media has always been a core focus of optics and acoustics. Specifically, in photonics and phononics, scientists have been dedicated to understanding and controlling the behavior of light and sound waves in periodic media.Photonic crystals have unique bandgap characteristics, providing an excellent platform for studying wave propagatio...

    2024-03-25
    Vedi traduzione