Italiano

Ultra capillary properties of composite liquid absorbing cores manufactured by laser powder bed melting additive manufacturing

622
2025-03-20 11:01:34
Vedi traduzione

Researchers from Sichuan University, the Key Laboratory of Advanced Special Materials and Preparation Processing Technology of the Ministry of Education, and the Nuclear Additive Manufacturing Laboratory of China Nuclear Power Research and Design Institute reported on the study of the ultra capillary performance of laser powder bed melting additive manufacturing composite structure liquid absorbing cores. The related paper titled "Super capillary performance of hybrid structured wicked additive manufactured via laser powder bed fusion" was published in Additive Manufacturing.

The capillary coefficient of performance (K/Reff) is a key performance indicator of the wick, which is a critical component of high-performance heat pipes. However, it is difficult to simultaneously increase permeability (K) and capillary pressure (∆ Pcap). A liquid absorbing core with channels and porous composite structure was manufactured using laser powder bed melting (LPBF) technology, achieving excellent capillary performance. The channel structure ensures excellent permeability (K), while the porous structure provides high capillary pressure, and the angular flow effect further enhances this pressure. The optimized structure with a 0.6mm square channel and a porosity of 70.99% achieved ultra capillary performance of up to 3.24 × 10 ⁻⁶ m, which is 106.3% higher than the previously reported optimal value. This study proposes a new design concept and preparation method for a novel high-performance heat pipe.

Keywords: liquid absorbing core; Capillary performance; Laser powder bed melting; Composite structure; heat pipe


Figure 1.316L alloy powder: (a) SEM morphology, (b) particle size distribution.

 


Figure 2. Model diagram of porous absorbent core.

 


Figure 3. Schematic diagram of additive manufacturing principle.


Figure 4. Schematic diagram of capillary performance tester.


Figure 5. X-ray computed tomography (XCT) data before and after binarization at the optimal threshold.


Figure 6. Scanning electron microscopy images of the surface morphology of a planar porous liquid absorbing core under different laser energy densities. (a)P1,(b)P2,(c)P3,(d)P4,(e)P5。


Figure 7. Reconstructed image of P1 sample. (a) Overall view of the sample, (b) distribution of interconnected pores in the sample.

 


Figure 8. Three dimensional visualization of P1 sample obtained from micro computed tomography (μ - CT) images. (a) Solid (gray) and total porosity (blue); (b) Individually labeled pore volume data; (c) Pore network model.


Figure 9. Scanning electron microscopy images of Round-R and Square-S liquid absorbing cores. (a)S1,(b)R1,(c)S2,(d)R2,(e)S3,(f)R3,(g)S4,(h)R4,(i)S5,(j)R5。


Figure 10. Reconstructed image of S1 sample. (a) Overall view of S1 sample, (b) distribution of interconnected pores in the sample.


Figure 11. Three dimensional visualization of S1 sample obtained from micro computed tomography (μ - CT) images. (a) Solid (gray) and total porosity (blue); (b) Individually labeled pore volume data; (c) Pore network model.


Figure 12. Schematic diagram of the relationship between laser energy density and molten pool. (a) Pool model, (b) Pool evolution.


Figure 13. Transient analysis of water droplets in contact with a planar porous absorbent core. (a)P1,(b)P2,(c)P3,(d)P4,(e)P5。


Figure 14. Schematic diagram of tortuosity.


Figure 15. (a) Capillary rise in R-type porous wick with channels and (b) S-type porous wick with channels.


In this study, additive manufacturing technology was used for the first time to design and manufacture a composite porous structure that combines structural design with process optimization of pore formation, achieving ultra-high capillary performance. The use of laser powder bed melting technology to manufacture channel porous composite absorbent cores with adjustable capillary properties is achieved by fine-tuning manufacturing process parameters and adding channels to simultaneously increase capillary pressure and permeability. Capillary rise tests were conducted using anhydrous ethanol as the working fluid to investigate the effects of laser energy density, material porosity and morphology, channel addition, and channel morphology on capillary performance.

The research results indicate that lower laser energy density increases the porosity of porous liquid absorbing cores, thereby improving permeability and capillary performance. Although the addition of channels increases the effective pore radius, the significant increase in permeability leads to an overall increase in capillary performance coefficient. It is worth noting that due to the phenomenon of angular flow and the difference in channel size, the performance of square channels is better than that of circular channels. The S1 channel porous composite structure achieved the best capillary performance, with a capillary coefficient (K/Reff) of 3.24 × 10 ⁻⁶ m, an effective pore radius (Reff) of 3.24 × 10 ⁻⁴ m, and a permeability (K) of 1.05 × 10 ⁻⁹ m. This exceeds the best values reported in the literature, even including those sintered fiber absorbent cores that have undergone complex surface treatments.

This work highlights the enormous potential of porous composite structures as heat pipe wick materials with high heat transfer coefficients. Helps to develop more efficient and effective heat pipe designs, especially in applications that require high thermal performance, such as electronic equipment cooling, aerospace engineering, and renewable energy systems.

Source: Yangtze River Delta Laser Alliance

Raccomandazioni correlate
  • Tianjin University's Photoacoustic Remote Sensing Microscopy Technology Breakthrough New Heights

    Recently, Professor Tian Zhen's team from Tianjin University has made a breakthrough in the field of photoacoustic remote sensing microscopy technology and successfully developed a new type of non-destructive testing method. This technology uses Kaplin high-power femtosecond laser as the key light source, further optimizing the solution to the internal flaw detection limitations of inverted chips,...

    2024-04-16
    Vedi traduzione
  • BluGlass received its first order α GaN DFB laser

    Global semiconductor developer BluGlass Limited has received its first α Purchase order for gallium nitride distributed feedback laser.This client is a pioneer in photon and fiber laser technology and will use BluGlass's blue prototype DFB laser to develop cutting-edge defense, aviation, and scientific applications.Quantum sensing, navigation, and computing applications are driving a huge de...

    2024-01-10
    Vedi traduzione
  • Outlook - Future of miniaturized lasers

    The disruptive miniaturization design of fiber lasers is feeding back into the handheld laser welding market. The handheld laser welding that enters the trunk is bathed in the luster of black technology, making traditional argon arc welding and electric welding tremble.In the early years, argon arc welding was the most commonly used thin plate welding method among our ancestors, but its drawbacks ...

    2023-12-19
    Vedi traduzione
  • Peking University has made significant progress in the field of photonic chip clocks

    Recently, the research team of Chang Lin from the School of Electronics of Peking University and the research team of Li Wangzhe from the Aerospace Information Research Institute of the Chinese Academy of Sciences published a research article entitled "Microcomb synchronized optoelectronics" online in Nature Electronics, realizing the application of photonic chip clocks in information systems for ...

    02-28
    Vedi traduzione
  • 2D photoelectric neuron array can achieve broadband and low loss optical nonlinearity accessible to ambient light

    Light can calculate functions during propagation and interaction with structured materials, with fast speed and low energy consumption. The use of all optical neural networks for general computing requires an optical activation layer with nonlinear dependence on the input. However, existing optical nonlinear materials either have slow speeds or very weak nonlinearity at the level of natural light ...

    2024-03-20
    Vedi traduzione