Français

Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory Achieves New Breakthrough

191
2025-02-18 14:58:56
Voir la traduction

On February 7th, at the Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory located in the HGTECH Technology Intelligent Manufacturing Future Industrial Park, Huang Wei, the technical director of the laboratory and the director of HGTECH Technology's semiconductor product line, gestured with his hands to introduce the principle of "glass through-hole technology" to Changjiang Daily reporters.


Huang Wei, Director of HGTECH Laser Semiconductor Product Line, inspects silicon wafers in the laboratory


At present, he is leading the research and development of laser-induced micro hole equipment. Once applied on advanced packaging substrate production lines, it will achieve chip manufacturing for 5G communication, MEMS (Micro Electro Mechanical Systems), RF components, biological imaging, and biosensing. In the future, the Chinese will be able to use glass substrates instead of some traditional silicon substrates in advanced packaging applications, which can be described as a new way. Huang Wei said, "We often use the line from 'Ne Zha' to encourage each other: If there is no way forward, we will take a path.

The just held city wide science and technology innovation conference proposed to deepen the deep integration of industry, academia, research and application led by enterprises, focus on major industrial needs, and carry out technological research and development. My team and I feel that we are working more vigorously! "Huang Wei said." From 0 to 1, innovation is the key, and from 1 million to 1 million, innovation is also the key. The industrial innovation joint laboratory he works for is to solve the equipment urgently needed by the industry. We don't make 'prototypes' lying in the exhibition hall for people to visit, but instead focus on tackling large-scale production of' one million 'and ultimately achieving stable, reliable, and efficient' chip manufacturing on glass substrates'.

For this purpose, Huang Wei and team members with an average age of 30 move to the laboratory, supplier, and customer sites every week to verify various unit technologies and develop complete equipment. All parties involved are laboratory members.

Collaborating to accomplish big things significantly reduces communication costs, "Huang Wei explained. Each unit technology in this equipment needs to be customized and developed according to customer needs to ensure the production of chip products that are truly needed by segmented industries in the future. I communicate every day, solve engineering problems every day, and the pace is very fast. I can't help but jog while walking. As soon as I start brainstorming and come back to my senses, the scheduled meeting time has exceeded half, and new ideas are still coming up crazily.

It is reported that the Industry Innovation Joint Laboratory is led by HGTECH Technology, and has been established by HGTECH Laser, Huazhong University of Science and Technology, Hubei Jiufengshan Laboratory, Hubei Optics Valley Laboratory, Wuhan Huari Precision Laser Co., Ltd., Wuhan Yunling Optoelectronics Co., Ltd., Changfei Advanced Semiconductors (Wuhan) Co., Ltd., Wuhan HGTECH Technology Investment Management Co., Ltd., and other units. Semiconductor laser equipment such as hidden cutting, annealing, and testing equipment have been included in the research and development projects.

Source: laserfair

Recommandations associées
  • Polarization polariton topology pointing towards a new type of laser

    Semi light, partially matter quasi particles, known as excitons polaritons, can easily bypass obstacles and condense into a single coherent state - both of which are characteristics of topological insulators. Researchers from the United States and China have developed a new technology to manufacture microcavities from chloride based halide perovskites. They expect this work to lead to a new type o...

    2024-05-30
    Voir la traduction
  • Shanghai Institute of Optics and Fine Mechanics has made progress in composite material based picosecond mirrors

    Recently, the High Power Laser Element Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of composite based picosecond mirrors. The related research results were published in Optics and Laser Technology under the title of "Hybrid Material Based Mirror Coatings for Picosed Laser Applications"....

    2024-07-12
    Voir la traduction
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong laser and matter, electrons with short pulse width and high energy are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite a wide range of ultrafast electromagnetic radiation, as well...

    2024-04-30
    Voir la traduction
  • German team develops and promotes laser technology for formable hybrid components

    Scientists from the Hanover Laser Center (LZH) in Germany are studying two laser based processes for producing load adapted hybrid solid components.From a transaction perspective, mixing semi-finished products can help save materials and production costs, but if the components that need to be replaced are made of expensive materials, these materials need to meet high requirements in future use, su...

    2023-08-16
    Voir la traduction
  • Process practice of blue light semiconductor laser cladding copper on copper

    Laser Cladding, also known as laser cladding or laser cladding, is a method of adding cladding material to the surface of the substrate and using a high-energy density laser beam to melt it together with the thin layer on the surface of the substrate. It forms a metallurgical bonded additive cladding layer on the surface of the substrate, which can be used for surface strengthening and defect repa...

    2024-04-09
    Voir la traduction