Français

Trends and Reflections on the Laser Industry in 2025

1667
2025-01-02 16:19:01
Voir la traduction

In 2024, the laser industry will still reach new heights, although some predicted concerns have been fulfilled! From beginning to end, the development path of the manufacturing industry has been full of uncertainty, but as time passes and we enter a new year, new technologies continue to emerge like mushrooms after rain.

In 2025, practitioners in the laser and manufacturing industries still face many challenges.
The turbulent international situation in Europe and America, as well as the threat of various geopolitical conflicts, will lead to supply chain restructuring, major changes in the automotive manufacturing industry, and a glimmer of hope for the semiconductor industry
With the increasingly fierce competition in the industry, words such as "internal competition", "reshuffling", and "cold winter" will continue to be heard throughout the year. Every enterprise in the laser industry chain is striving to explore new paths, striving to break through and protect themselves in the era of great change.

Looking back at 2024 and looking ahead to 2025, what industry trends are worth paying attention to?
According to the latest research data from Optech Consulting, it is expected that the global laser material processing equipment market will reach $23 billion by 2024.



Image source: Optech Consulting
From the chart, the market size has decreased by 1% to 5% compared to the historical high of $23.5 billion set in 2023.
Geographically speaking, only a few markets have shown growth this year, while demand in the European and American markets has declined, while the Chinese market has remained stable with no significant upward or downward trend.

From an application perspective, market growth is gradually shifting from macro processing to micro processing. Prior to this, the market demand for laser precision machining equipment had experienced a two-year slump, but this year the demand has rebounded. In contrast, the cutting equipment market has declined for the second consecutive year, while the growth rate of the laser welding market has slowed down due to the maturity of China's new energy vehicle market.

Based on existing information and overall trends, the market trend of the laser industry in 2024 is expected to continue until early 2025, with precision machining continuing to strengthen and the macro machining sector also expected to continue to decline.

In addition to laser processing, other fields are also emerging. Thanks to the rapid development of artificial intelligence, photonics is gradually moving towards the semiconductor field. When will it enter the PCB level or even chip level applications? The answer seems to be now.

It is reported that billions of dollars have been invested in companies that are driving photonics towards PCB and chip levels by 2024. For example, in October, Google Ventures invested $400 million in Lightmatter, with the ultimate goal of elevating photonics to the level of processors. Now it seems that the industry is actively embracing photon interconnect technology, aiming to break through the speed and bandwidth limitations of traditional electronic interconnects.

Beyond the aforementioned fields, laser fusion is also a frequently mentioned term this year. However, true commercialization is still some time away. Multiple rounds of investments were made in global nuclear fusion startups in 2024, but the amounts were mostly in the millions of dollars. These funds are sufficient to support the construction of other laser facilities, but they are far from enough for laser fusion testing facilities.
Although NIF has made good progress this year and is expected to achieve an output of 5.2MJ by 2024, it still faces many problems: which laser fusion process will achieve net gain, that is, the energy generated exceeds the energy required by the laser? What is the goal of mass production?

To address this, we first need a pump laser that is larger and more efficient than any product we currently have, and optical devices that can withstand long-term high-power, high-energy, and high-intensity operations. Germany is currently conducting research and development on the above-mentioned projects, preparing necessary components for laser fusion power plants, developing more efficient laser diodes, and efficient manufacturing technologies.

At the industrial level, TRUMPF, Jenoptik, Laserline, and AMS OSRAM are involved; At the research level, ILT and FBH are also involved.
Although the actual laser process for nuclear fusion has not yet been defined, lasers and optical devices used for nuclear fusion may soon contribute to the profits of their manufacturers.

In addition, laser communication, quantum technology, and the application of laser technology in the field of new energy are expected to see significant development and breakthroughs by 2025.

Source: Yangtze River Delta Laser Alliance

Recommandations associées
  • Dazu Photonics launched the third generation of high power fiber laser successfully increased the product power to 50kW

    In recent years, with the vigorous development of new energy and other industries, the improvement of environmental awareness and the increasing demand for new applications, the demand for fiber lasers in intelligent manufacturing is increasing, and the demand for power is also increasing, and high-power fiber lasers can significantly improve production efficiency and are widely sought after by th...

    2023-09-02
    Voir la traduction
  • Nankai University makes progress in the field of free electron photon interactions

    Recently, a research team led by Professor Cai Wei and Professor Xu Jingjun from the School of Physical Sciences at Nankai University has experimentally confirmed for the first time the generation of polaritons, also known as Smith Purcell radiation, at the two-dimensional scale, and further demonstrated the ability of free electrons to regulate two-dimensional Smith Purcell radiation. The researc...

    02-11
    Voir la traduction
  • Shanghai Optics and Machinery Institute has made progress in near-field state analysis of high-power laser devices based on convolutional neural networks

    Recently, the research team of the High Power Laser Physics Joint Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics identified and analyzed the abnormal near-field output of the SG - Ⅱ upgrade device by using the spatial domain computing method and the deep learning model with attention mechanism in response to the requirements of real-time and effective...

    2024-04-25
    Voir la traduction
  • A German research team has developed a new type of perovskite stacked battery

    According to relevant media reports, a research team from the Helmholtz Center in Berlin, Germany, and Humboldt University has jointly developed a new type of perovskite stacked battery. This battery has broken the world record for similar batteries with a photoelectric conversion efficiency of 24.6%. In the solar cell family, in addition to silicon-based solar cells, there are also thin-film so...

    02-08
    Voir la traduction
  • Fraunhofer IZM launches quantum cascade project to develop modular laser system

    Creating new laser systems for use in spectroscopy applications is a challenging and costly endeavor. In order to give even small and medium-sized enterprises access to such innovative technology, the Fraunhofer Institute for Reliability and Microintegration (IZM) co-launched the QuantumCascade project to develop a modular laser system for a range of multispectral analytics.This week the IZM repor...

    07-30
    Voir la traduction