Français

An efficient femtosecond pulse amplification technique for extracting the maximum stored energy in fiber laser amplifiers

954
2024-11-13 11:55:15
Voir la traduction

The well-known journal Optica published a paper in November 2024 titled "Near complete extraction of maximum stored energy from large core fibers using coherent pulse stacking amplification of femtosecond pulses"The authors of the paper were the University of Michigan, Lawrence Berkeley National Laboratory, Peking University, and the German Institute of Synchrotron Radiation.

The specific technique is to use a cascaded "GTI" (Gire Tounois interferometer) method to synthesize 81 amplified pulses together in the time domain. The technical difficulty that needs to be overcome is to control the phase and amplitude of each pulse to achieve coherent synthesis. The core femtosecond light source is a 1 GHz repetition rate femtosecond fiber laser, developed by Professor Zhang Zhigang's group at the School of Electronics, Peking University.

The author of the paper has demonstrated using the aforementioned techniques that, with a continuous pump of 100 W and a repetition rate of 2 kHz, nearly 10 mJ of amplified pulse energy can be extracted, far exceeding the energy output of conventional large mode area fiber amplifiers, which can reach less than 1 mJ. The extraction efficiency is close to 90%.

This efficient time-domain pulse synthesis technique can greatly improve the efficiency of pulse synthesis and reduce the number of amplifiers used for spatial synthesis.

Although the repetition rate and pulse energy obtained from this experiment are not yet high, this technology demonstrates the potential to generate femtosecond strong laser pulses with Joule level pulse energy and repetition rates above 10 kHz. It may provide a light source for studying strong field physics and particle accelerators under extreme conditions, as well as for generating secondary radiation.

Figure 1 shows the efficiency of pulse energy extraction in a fiber amplifier independent of core diameter under nonlinear confinement. Figure 1 indicates that the pulse extraction efficiency can only approach 100% of the amplifier's stored energy when the pulse is broadened to 100 ns


Figure 2 shows a schematic diagram of a composite GTI cavity, where 81 incident laser pulses are coherently superimposed in four large loop cavities to form 9 pulses; Then coherently superimpose them into one pulse in four small cavities


Figure 3: Photo of the Composite GTI Chamber Experimental Device


Figure 4 shows the pulse waveform and spectrum of the coherent synthesized pulse with an energy of 3 mJ and a width of 313 fs

Source: Yangtze River Delta Laser Alliance

Recommandations associées
  • From Colored Glass Windows to Lasers: Nanogold Changes Light

    For a long time, craftsmen have been fascinated by the bright red color produced by gold nanoparticles scattered in colored glass masterpieces. The quantum origin of this optical miracle has always been mysterious, until modern advances in nanoengineering and microscopy revealed the complexity of plasma resonance.Now, researchers are preparing to push nano plasma technology, which was once used fo...

    2024-01-02
    Voir la traduction
  • Researchers from Chalms University of Technology in Sweden have successfully improved the efficiency of optical combs to become a high-performance laser

    Researchers from Chalms University of Technology in Sweden have successfully improved the efficiency of optical microcombiners, making them a high-performance laser. This breakthrough will have a wide impact in fields such as space science and healthcare.The two rings in the figure are micro resonators, which play a crucial role in the implementation of efficient micro combs.The importance of micr...

    2023-09-27
    Voir la traduction
  • The estimated output value of the LiDAR market in 2029 is expected to reach 5.352 billion US dollars

    Market research firm TrendForce Consulting released an industry insight report today, stating that currently LiDAR is mainly used in the automotive market for passenger cars and unmanned taxis, while in the industrial market it supports applications such as robotics, factory automation, and logistics.The report points out that driven by Level 3 and more advanced auto drive system system and logist...

    01-22
    Voir la traduction
  • Single photon avalanche diode for millimeter level object recognition using KIST

    LiDAR sensors are crucial for implementing modern technologies such as autonomous driving, AR/VR, and advanced driving assistance systems. For example, more accurate shape detection in AR/VR devices and smartphones depends on the improved range resolution of medium and short range LiDAR. This requires a single photon detector with improved timing jitter performance.LiDAR calculates the distance an...

    2024-02-03
    Voir la traduction
  • Chip guided beam for new portable 3D printers

    Imagine being able to carry a 3D printer with you and quickly create low-cost objects, such as fastening bicycle wheels or parts needed for critical medical surgeries. Scientists from the Massachusetts Institute of Technology (MIT) and the University of Texas at Austin have combined silicon photonics and photochemical technology to successfully develop the first chip based 3D printer, taking a cru...

    2024-06-18
    Voir la traduction