Français

Xi'an Institute of Optics and Fine Mechanics has made significant progress in attosecond imaging research

949
2024-10-26 11:36:19
Voir la traduction

Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in attosecond imaging research, achieving high-resolution imaging of ultra wide spectrum light sources. The related results were published in the journal Photonics Research under the title "Snapshot coherent diffraction imaging across ultra wideband spectra".

Figure 1. Demonstration of multi-color diffraction. (a) Diffraction setting. (b) Example image. (c) FT of (b). (d) Obtained through zero padding around (b). (e) FT of (d). (f) Obtain (e) through cropping.

The duration of attosecond light pulses is extremely short (1 attosecond=10-18 seconds), which is a direct and effective means to expand the study of ultrafast dynamics of microscopic matter and reveal underlying physical laws in multiple fields. The attosecond light pulse can achieve ultra-high time resolution, while also possessing characteristics such as short wavelength, high coherence, and high-precision synchronous control. However, the inherent ultra wide spectrum of attosecond light pulses introduces significant chromatic aberration in imaging systems, and the interference between different spectral components and the lack of high-quality optical components in the extreme ultraviolet/soft X-ray band have become bottlenecks restricting the development of attosecond imaging. Our goal is to overcome these technological challenges, achieve ultra-high spatiotemporal resolution imaging based on attosecond light sources, and promote the application of attosecond light sources in fields such as biomedicine, laser precision processing, and semiconductors, "said Wang Hushan, head of the attosecond imaging research team at the attosecond Science and Technology Research Center.

The new method for calculating imaging using lensless ultra wide spectrum proposed by the research team of Xi'an Institute of Optics and Fine Mechanics can extract high-quality clear monochromatic diffraction patterns from blurry ultra wide spectrum diffraction patterns, thereby achieving high-resolution imaging. This method significantly improves the applicable spectral bandwidth of a single coherent diffraction imaging light source, with a spectral bandwidth to center wavelength ratio of up to 140%, which is currently a relatively advanced level internationally, "said Li Boyang, a member of the Amis Imaging Research Team at the Amis Science and Technology Research Center. This study provides a key technological path for attosecond imaging, which is of great significance for the construction of advanced attosecond laser facilities (part of Xi'an) imaging terminals and the significant application expansion of attosecond light sources in China's major scientific and technological infrastructure.

Figure 2. (a) (d) Narrow band coherent diffraction imaging; (b) (e) Direct inversion results of broadband optical diffraction patterns; (c) (f) Broadband coherent diffraction imaging achieved by the monochromatization method proposed by the team

The 2023 Nobel Prize in Physics is awarded to three scientists in recognition of their experimental method of generating attosecond light pulses for studying the electronic dynamics of matter. Fu Yuxi, Deputy Director of Xi'an Institute of Optics and Fine Mechanics, introduced, "Since our establishment, we have had a solid theoretical research foundation in the field of ultrafast light science. In recent years, we have deployed fundamental, forward-looking, and systematic research in the field of ultrafast light science. In 2021, we specifically established the Ames Science and Technology Research Center, closely focusing on the forefront of world science and technology and major national needs, striving to build an international first-class innovative research platform and talent team, and providing key support for seizing the high ground in the field of ultrafast light science.

Source: Opticsky

Recommandations associées
  • Observation of laser power changes in ultrafast protein dynamics

    When researchers at the Max Planck Institute of Medicine conducted their first ultrafast X-ray crystallographic experiment on myoglobin in 2015, they were not aware that they had conducted the wrong experiment. By increasing the power of X-ray free electron lasers to ensure usable diffraction patterns, lead researcher Ilme Schlichting said that they "suddenly entered the wrong [excited] state with...

    2024-02-28
    Voir la traduction
  • Heavyweight Natuer: New progress in the efficiency of perovskite battery modules! Professor Zhang Xiaohong from Suzhou University, an alliance unit, issued a document

    Recently, Professor Zhang Xiaohong and Professor Peng Jun from the Functional Nanomaterials and Soft Materials Research Institute (FUNSOM) of Suzhou University, along with Professor Mohammad Khaja Nazeeruddin, Professor Paul J. Dyson, Professor Zhaofu Fei, and Professor Ding Yong from North China Electric Power University, collaborated to publish their research findings on Dopant additive synergy ...

    2024-04-19
    Voir la traduction
  • China has successfully developed the world's first 193 nanometer compact solid-state laser

    The Chinese Academy of Sciences reduced the volume of the deep ultraviolet laser by 90% and achieved 193 nm vortex beam output for the first time. Professor Xuan Hongwen described "loading truck equipment into the car trunk". This technology enables a 30% reduction in the size of lithography features, breaking through the bottleneck of the 2-nanometer process. In the next three years, laser power ...

    03-24
    Voir la traduction
  • Munich Laser World of Photonics 2025 Grand Opening

    On June 24-27, 2025, the global optoelectronic event Laser World of Photonics 2025 was grandly opened in Munich, Germany. This exhibition brings together over 1350 companies from 43 countries, making it the largest in history. Among them, international laser giants Coherent, IPG, TRUMPF, and MKS showcased their latest breakthroughs and future directions in laser technology with multiple heavyweigh...

    06-25
    Voir la traduction
  • Measurement of spectral line intensity of NO2 near 6.2 microns using a quantum cascade laser spectrometer

    Recently, a joint research team from the Key Laboratory of Optoelectronic Information Acquisition and Processing of Anhui University, the Laboratory of Laser Spectroscopy and Sensing of Anhui University, and Ningbo Haier Xin Optoelectronic Technology Co., Ltd. published a paper titled "Measures of line strengths for NO2 near 6.2" μ Research paper on using a quantum cascade laser spectrometer.Re...

    2024-01-02
    Voir la traduction