Français

HieFo launches high-power DFB laser chip to enter coherent optical transmission market

360
2024-09-13 11:59:41
Voir la traduction

Recently, HieFo, a leading enterprise in the field of optical communication, officially launched its HCL30 DFB laser chip, designed specifically to meet the stringent requirements of coherent optical transmission.

 



This chip combines efficient optical output power with excellent narrow linewidth performance, providing multiple industry standard wavelength options in the O-band and C-band, bringing unprecedented performance improvements to fields such as data centers, artificial intelligence connectivity, communication, and general sensing.

Dr. Genzao Zhang, co-founder and CEO of HieFo, said, "The HCL30 DFB laser chip was developed specifically for the demand of the Coherent Lite market; however, based on HieFo's recent innovation in chip design, the outstanding performance of this laser chip will be widely applied in fields such as data centers, artificial intelligence connectivity, communication, and general sensing.

HieFo's HCL30 is a 1mm cavity length chip available in bare chip or chip carrier (COC) format mounted on a proprietary base. This device can achieve spectral linewidth performance of less than 300 KHz while providing a typical optical output power of 150 mW.

HCL30 is an ideal integrated solution for highly integrated optical platforms based on silicon optical integration design today. Emerging CPO (co packaged optics) and LPO (distributed optics) technologies can also leverage the unique performance of this newly released laser chip.

HCL30 is the first new DFB laser product launched by HieFo in the recent innovation of InP chip design architecture. In the future, other product variants will be launched to meet specific optical design requirements, such as efficient design for ultra-high light output power or extremely narrow linewidth performance.

Launching the next generation high-power gain chip HGC20
Not long ago, HieFo also launched the next-generation high-power gain chip HGC20 for integrating tunable laser components (xITLA).

Chip design addresses the key market demand for higher optical output power and lower power consumption. HieFo's HGC20 C+band gain chip serves as the foundational component for the next generation of integrated tunable lasers (xITLA), setting a new performance benchmark.

Dr. Genzao Zhang said, "The launch of the HGC20 gain chip is an example of the innovation that HieFo will bring to the optical communication market in the coming months and years.

He added, "HieFo has made significant enhancements and improvements in chip basic design, which will become the foundation for the widespread application of InP based chips and drive the optical interconnection of the next generation data center, communication, and AI connectivity markets.

HGC20 is a 1mm cavity length chip installed on a proprietary base, with an optical output power of nearly 22dBm (depending on the driving current). For applications that require lower overall module power consumption, the efficient design of HGC20 increases its wall insertion efficiency (WPE) by up to 40% compared to common gain chips on the market.

HieFo's gain chip technology has been a fundamental component of the tunable laser market for over 15 years. HGC20 continues to maintain its industry-leading position in performance parameters such as frequency accuracy, narrow linewidth, and low noise.

Acquisition of EMCORE assets from optoelectronic device manufacturer
HieFo, headquartered in California, USA, has recently inherited over 40 years of innovative heritage in the field of optoelectronic devices from EMCORE, the world's largest provider of inertial navigation solutions for aerospace and defense industries, through a management acquisition.

HieFo is currently focused on developing and commercializing efficient photonic devices for the optical communication industry, and will continue to pursue the most innovative and disruptive solutions to serve the data communication, communications, artificial intelligence connectivity, and general sensing industries.

It is reported that on April 30th of this year, HieFo purchased EMCORE's chip business and indium phosphide (InP) wafer manufacturing business for a total purchase price of $2.92 million.

This includes the transfer of almost all assets related to EMCORE's non core discontinued chip business line, including assets used in its InP wafer manufacturing business in Alhambra, California, including but not limited to equipment, contracts, intellectual property, and inventory.

HieFo will initially sublet a complete building and a part of another building on its Alhambra base, and ultimately sublet two complete buildings, paying rent for these buildings on a pro rata basis starting from July 1, 2024.

HieFo has also successfully hired almost all key scientists, engineers, and operations personnel from EMCORE's discontinued chip business, and will continue to operate in EMCORE Alhambra campus.

Indium phosphide chip factory resumes production
HieFo recently announced that its indium phosphide (InP) wafer manufacturing plant in Alhambra, California, has successfully restarted production on August 23, 2024, following its acquisition of wafer manufacturing and chip related business assets from EMCORE management. The acquisition was successfully completed in early May 2024, and HieFo immediately took over the operation.

Through this transaction, HieFo not only incorporates EMCORE's existing team of key scientists, engineers, and operational elites, but also inherits over 40 years of global leadership in InP chip design and manufacturing, as well as rich intellectual property rights in advanced optoelectronic devices.

It is worth noting that EMCORE had planned to withdraw from the InP chip business, resulting in a temporary suspension of wafer manufacturing operations. But HieFo quickly resumed production activities in the Alhambra campus with its experienced core team and strong financial strength.

In the past three months, the HieFo team has made every effort to restart idle equipment, restore the epitaxial wafer growth and regeneration capabilities of MOCVD reactors, restart front-end microfabrication processes, and build a comprehensive device testing, chip preparation, and separation process in the back-end.

At present, HieFo's InP based devices (including lasers, gain chips, SOA, PIN/APD detectors, etc.) have passed strict reliability verification tests, and their performance, quality, and reliability have reached or even exceeded established standards.

Of particular note is that HieFo has prepared a newly designed chip for mass production, which is designed to support single carrier wavelength transceivers up to 1.6Tbps, demonstrating its technological innovation capabilities. Several leading optical module manufacturers have extended olive branches to HieFo, ordering their efficient optical devices. This achievement marks a solid step for HieFo in driving innovative solutions for the telecommunications, data communication, and AI connectivity industries.

The CEO of HieFo stated, "We are delighted to announce the full resumption of optical device production at the Alhambra factory. This is not only a vivid manifestation of HieFo's commitment to the continuity and excellence of high-performance optical chip production, but also our firm confidence in continuing to lead the industry's development.

Source: OFweek

Recommandations associées
  • Researchers from Columbia University in New York reported the latest research on reverse laser sintering of metal powders

    Researchers from Columbia University in New York reported the latest research on reverse laser sintering of metal powders. The related achievements were published in Scientific Reports under the title "Invested laser sintering of metal powder".The researchers demonstrated the ability of reverse laser sintering technology to manufacture metal powder parts. Researchers first deposit a layer of coppe...

    2024-01-29
    Voir la traduction
  • New insights into the interaction between femtosecond laser and living tissue

    The N-linear optical microscope has completely changed our ability to observe and understand complex biological processes. However, light can also harm organisms. However, little is known about the mechanisms behind the irreversible disturbances of strong light on cellular processes.To address this gap, the research teams of Hanieh Fattahi and Daniel Wehner from the Max Planck Institute for Photos...

    2024-06-07
    Voir la traduction
  • AWOL Vision will showcase cutting-edge laser projectors and award-winning innovations at CEDIA 2023

    AWOL Vision has announced that it will be showcasing the latest innovations in home entertainment at this year's CEDIA Expo in Denver, Colorado from September 7-9.At the show, AWOL Vision will debut the new LVV-3000 Pro and LVV-3500 Pro laser projectors with Dolby Vision and Control4 integration, and will showcase the latest Vanish TV, The TV recently received the prestigious "IFA 2023 Best of the...

    2023-09-08
    Voir la traduction
  • Significant progress made in 808nm high-power semiconductor laser chips

    The R&D team of Xi'an Lixin Optoelectronics Technology Co., Ltd. (hereinafter referred to as "Lixin Optoelectronics") has made significant progress in 808nm high-power semiconductor laser chips through continuous technological breakthroughs.808nm semiconductor laser, as an ideal and efficient solid-state laser pump source, plays an important role in advanced manufacturing, mechanical processin...

    2024-06-14
    Voir la traduction
  • The estimated output value of the LiDAR market in 2029 is expected to reach 5.352 billion US dollars

    Market research firm TrendForce Consulting released an industry insight report today, stating that currently LiDAR is mainly used in the automotive market for passenger cars and unmanned taxis, while in the industrial market it supports applications such as robotics, factory automation, and logistics.The report points out that driven by Level 3 and more advanced auto drive system system and logist...

    01-22
    Voir la traduction