Français

Breakthrough 8-channel 915nm SMT pulse laser, ushering in a new era of laser radar applications

341
2024-08-09 14:10:35
Voir la traduction

The 8-channel 915nm SMT pulse laser can enhance the long-range laser radar system of autonomous vehicle;
An 8-channel QFN package certified by AEC-Q102, featuring high performance and efficiency, utilizing proprietary wavelength stabilization technology from AMS Osram;

Based on over 20 years of experience in pulse laser technology.

Shanghai, China, August 8, 2024- AMS, a leading global optical solutions provider, announced today that it will launch an innovative high-performance 8-channel 915nm SMT pulse laser - SPL S8L91A_3 A01- to empower autonomous driving, simplify system design, and enhance performance, making long-range detection lidar more efficient and reliable. The SPL S8L91A_3 encapsulated by QFN has been applied to the laser radar systems of autonomous vehicle such as passenger cars, trucks and driverless taxis, greatly improving the operation, navigation and data processing capabilities of the auto drive system.

SPL S8L91A_3 A01 application image (Image: AMS Osram)

In autonomous driving applications, SPL S8L91A_3 A01 is used to significantly enhance long-range high-resolution LiDAR systems. With AEC-Q102 certification and an 8-channel EEL (edge emitting laser) packaged in QFN, AMS Osram now offers a more diverse range of infrared components for system developers to choose from. The peak optical power of this new product is 1000W, with an efficiency of up to 30% and outstanding performance.

Autonomous driving is one of the most discussed topics about the future, and most system suppliers firmly believe that LiDAR is essential for advanced autonomous driving. For over 20 years, in the field of development and production of automotive LiDAR pulse infrared lasers, AMS Osram has been an important participant in the autonomous driving market - delivering over 20 million units, with experience and quality fully recognized by the market. SPL S8L91A_3 A01 is the latest product lineup launched based on the company's rich experience in automotive LiDAR technology.

SPL S8L91A_3 A01 is an advanced infrared high-power SMT laser tailored for laser radar applications. It adopts a single-chip integrated 8-channel design, with each laser channel providing 125W of power, resulting in a total peak optical power of 1000W, greatly enhancing the performance of long-distance laser radar systems that are crucial for highway autonomous driving. This laser has 4 individually addressable anodes, each connected to two parallel operating laser channels. Thanks to the addressing function, customers are able to flexibly design the final product.

SPL S8L91A_3 A01 product image (Image: AMS Osram)

The use of integrated laser packaging can achieve more compact and efficient settings, without the need for alignment between multiple components, thus simplifying the design and manufacturing process. This integration not only shortens development time, but also significantly improves the reliability and performance of the final product. The design of this laser adopts the proprietary wavelength stabilization technology of AMS Osram, which can significantly reduce wavelength drift caused by temperature changes, thereby improving the signal-to-noise ratio (SNR) of the laser radar system and expanding the detection range.

SPL S8L91A_3 A01 is designed to meet the strict requirements of the automotive industry, with performance specifications that meet and exceed AEC-Q certification standards. The QFN packaging of this laser is key to ensuring reliable design and providing a durable solution to meet the challenges of automotive environments. In addition to the laser radar system that can be widely used in autonomous vehicle, the new laser can be used in industrial laser radar, which can improve the performance of applications such as robots, security monitoring, smart cities and the last mile delivery.

Our new 8-channel laser module will revolutionize the autonomous driving industry. It simplifies system design and improves performance, making long-range LiDAR systems more effective and reliable. By integrating our advanced wavelength stabilization technology, we can ensure excellent performance under different working conditions, "said Clemens Hofmann, Senior Chief Engineer of AMS Osram Lidar
SPL S8L91A_3 A01 will be launched this autumn.

Source: AMS Osram

Recommandations associées
  • An innovative technology that can make light "bend"

    A research team from the University of Glasgow in the UK drew inspiration from the phenomenon of clouds scattering sunlight and developed an innovative technology that can effectively guide or even "bend" light. This technology is expected to achieve significant breakthroughs in fields such as medical imaging, cooling systems, and even nuclear reactors. The relevant research results were published...

    2024-11-11
    Voir la traduction
  • Research progress on aerospace materials and anti ablation coatings: a review

    India B R. Dr. Jalandal Ambedkar National Institute of Technology and the Indian Institute of Technology reviewed and reported on the research progress of aerospace materials and anti ablation coatings. The related paper was published in Optics&Laser Technology under the title "Progress in aerospace materials and ablation resistant coatings: A focused review".a key:1. A comprehensive overview ...

    2024-11-21
    Voir la traduction
  • Aston University is the first to adopt innovative laser detection technology using MEMS mirrors

    The School of Engineering and Physical Sciences at Aston University, located in Birmingham, UK, is at the forefront of exploring innovative laser detection methods and turbulence simulation. The plan revolves around the utilization of micro electromechanical mirrors, which have had a significant impact on various scientific fields over the past two decades.MEMS reflectors have gained widespread re...

    2024-03-07
    Voir la traduction
  • Shanghai Institute of Optics and Fine Mechanics has made significant breakthroughs in the study of laser damage performance of mid infrared anti reflective coatings

    Recently, the Thin Film Optics Research and Development Center of the High Power Laser Component Technology and Engineering Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, collaborated with researchers from Hunan University and Shanghai University of Technology to make new progress in the study of laser damage performance of mid infrared anti reflect...

    04-07
    Voir la traduction
  • The researchers expect the EUV lithography market to grow from $9.4 billion in 2023 to $25.3 billion in 2028

    The researchers estimate the period from 2023 to 2028. EUV lithography will address the limitations of traditional optical lithography, which has reached its physical limits in terms of resolution. The shorter wavelength of EUV light allows for the creation of smaller features and tighter patterns on silicon wafers, enabling the manufacture of advanced microchips with greater transistor densities....

    2023-08-04
    Voir la traduction