Français

The Stanford University team has manufactured the first practical chip grade titanium sapphire laser

800
2024-07-01 14:11:26
Voir la traduction

According to a report in Nature on June 26th, a team from Stanford University in the United States has developed a titanium sapphire laser on a chip. Whether in terms of scale efficiency or cost, this achievement is a huge progress.

 


Image source: Nature website
Titanium sapphire lasers are indispensable in many fields such as cutting-edge quantum optics, spectroscopy, and neuroscience, but they have not been widely applied in the real world. Because this type of laser is usually large in size and expensive, costing hundreds of thousands of dollars per unit, and requiring other high-power equipment (priced at approximately $30000 per unit) to maintain operation.

To solve this problem, researchers first laid a large layer of titanium sapphire on the silica platform; Grind, etch, and polish the titanium sapphire into an extremely thin layer, only a few hundred nanometers thick; Then, design a vortex composed of tiny ridges on the thin layer. These ridges are like fiber optic cables, guiding light to circulate continuously and gradually increasing in intensity. This mode is called a waveguide. Compared with other titanium sapphire lasers, this prototype has reduced its size by 4 orders of magnitude (equivalent to one thousandth of the original) and reduced its cost by 3 orders of magnitude (equivalent to one thousandth of the original).

The remaining part is a microscale heater that can heat the light passing through the waveguide, allowing researchers to change the wavelength of the emitted light and adjust the wavelength range to between 700-1000 nanometers, from red light to infrared light.

In quantum physics, this new laser can significantly reduce the scale of state-of-the-art quantum computers; In the field of neuroscience, it can be applied in optogenetics, allowing scientists to control neurons by guiding light inside the brain through relatively large optical fibers; In ophthalmology, it may be combined with chirped pulse amplification technology in laser surgery to achieve new applications, or provide cheaper and more compact optical coherence tomography technology to evaluate retinal health.

Currently, constantly updated technology allows many laboratories to have ultra small lasers on a single chip, rather than a large and expensive laser. Small size lasers actually help improve efficiency - mathematically speaking, intensity is equal to power divided by area. Therefore, maintaining the same power as large lasers but reducing their concentrated area will result in a significant increase in intensity. More importantly, these compact and powerful lasers can quickly leave the laboratory and serve many different important applications.

Source: Chinese Academy of Sciences

Recommandations associées
  • SPIE Optics and Photonics 2025: Kyle Myers from Puente elected as SPIE Chair

    The founder and principal of Puente Solutions Kyle J. Myers has been elected to serve as the 2026 Vice President of SPIE, the international society for optics and photonics. With her election, Myers joins the SPIE presidential chain. She will serve as president-elect in 2027, and as the Society’s president in 2028. Newly-elected: Myers, McNally, Rubinsztein-Dunlop, Wade, Medicus, and ErdmannTh...

    08-08
    Voir la traduction
  • Munich Shanghai Light Expo and Light Academic Publishing Center further strengthen cooperation

    In November 2024, based on the mutual trust and cooperation over the past years, the Munich Shanghai Optical Expo and the Light Academic Publishing Center of the Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences (hereinafter referred to as the "Light Center") reached a consensus on further strategic development as they ushered in the year of disruptive sci...

    2024-12-05
    Voir la traduction
  • Artificial intelligence accelerates the process design of 3D printing of metal alloys

    In order to successfully 3D print metal parts to meet the strict specifications required by many industries, it is necessary to optimize process parameters, including printing speed, laser power, and layer thickness of deposited materials.However, in order to develop additive manufacturing process diagrams that ensure these optimal results, researchers have to rely on traditional methods, such as ...

    2024-02-27
    Voir la traduction
  • New machine learning algorithm accurately decodes molecular optical 'fingerprints'

    Recently, a research team from Rice University in the United States developed a new machine learning algorithm - Peak Sensitive Elastic Network Logistic Regression (PSE-LR). This algorithm is adept at interpreting the unique optical characteristics of molecules, materials, and disease biomarkers, which can help achieve faster and more accurate medical diagnosis and sample analysis. The relevant pa...

    05-09
    Voir la traduction
  • The new progress of deep ultraviolet laser technology is expected to change countless applications in science and industry

    Researchers have developed a 60 milliwatt solid-state DUV laser with a wavelength of 193 nanometers using LBO crystals, setting a new benchmark for efficiency values.In the fields of science and technology, utilizing coherent light sources in deep ultraviolet (DUV) regions is of great significance for various applications such as lithography, defect detection, metrology, and spectroscopy. Traditio...

    2024-04-10
    Voir la traduction