Français

Researchers prepare a new type of optical material with highly tunable refractive index

949
2024-06-25 12:00:16
Voir la traduction

It is reported that researchers from Beijing University of Chemical Technology and BOE Technology Group Co., Ltd. have collaborated to develop a transparent organic-inorganic composite optical adhesive material with highly tunable refractive index. The related research paper was recently published in Engineering.

In the early days, glass was the main raw material for optical components. In recent years, organic resin based optical materials have developed rapidly due to their advantages of easy molding, light weight, and low cost. However, currently commercialized organic optical resins are often limited by the structural characteristics of organic molecules and polymer chains, with refractive indices generally limited to 1.4-1.6.

Refractive index is one of the important parameters of optical materials. High refractive index can reduce the thickness and curvature of optical components, while maintaining optical functional effects and achieving miniaturization of components, expanding their application range.

Based on the molecular structure characteristics of acrylic resin based UV curable optical adhesive and the practical application needs in optoelectronic display devices, the R&D team has developed a highly transparent and high refractive index optical adhesive material by optimizing the preparation of titanium dioxide nanoparticles and their composite process with acrylic resin.

The R&D personnel used electron microscopy imaging and atomic force microscopy to analyze and test the microstructure of the composite material, confirming that titanium dioxide nanoparticles are uniformly dispersed in the composite material, and the cured film has good flatness. When the mass fraction of titanium dioxide in the composite optical adhesive is 30wt% (mass percentage), the refractive index of the composite material can reach 1.67.


In addition, after being cured into a film by ultraviolet (UV), the refractive index of the material can even reach 2.0, while maintaining high transparency of over 98% and low haze of less than 0.05% in the visible light range. Moreover, precision processing of optical microstructures can be further achieved through embossing technology, which can be used to make new optical components such as display light guides. In the paper, the R&D team demonstrated that using a new type of optical adhesive to manufacture a micro prism type light guiding film can effectively improve illumination and reduce energy consumption. In the future, this achievement is expected to be widely applied in fields such as precision medicine, health lighting, and new display products.

Article source: Science and Technology Daily

Recommandations associées
  • Natural Communication: Oxide Dispersion Enhancement for High Performance 3D Printing of Pure Copper

    The laser additive manufacturing technology of pure copper (Cu) with complex geometric shapes has opened up vast opportunities for the development of microelectronic and telecommunications functional devices. However, laser forming of high-density pure copper remains a challenge.Recently, the forefront of additive manufacturing technology has noticed a joint report by the University of Hong Kong, ...

    04-11
    Voir la traduction
  • The laser direct writing lithography equipment market is expected to reach $160.25 million in 2029 with a compound growth rate of 5.21%

    Lithography machine is the key equipment for making high precision mask plate. Using a very fine laser beam, the highly precise line pattern is drawn on the mask substrate under the control of an extremely precise automatic control system.Laser direct writing is to use a laser beam with variable intensity to implement variable dose exposure on the resist material (photoresist) on the subst...

    2023-08-04
    Voir la traduction
  • Stuttgart University researchers develop a new high-power 3D printed micro optical device for compact lasers

    Researchers from the Fourth Institute of Physics at the University of Stuttgart have demonstrated the feasibility of 3D printed polymer based micro optical devices in harsh laser environments.This study was detailed in the Journal of Optics, outlining the use of 3D printing technology to directly manufacture microscale optical devices on fibers, seamlessly integrating fibers and laser crystals int...

    2024-01-09
    Voir la traduction
  • Marvin Panaco launches the Mastersizer 3000 for laser diffraction particle size determination+

    Marvin Panaco, a subsidiary of Spectris plc located in Egham, Surrey, UK, announced the launch of its new laser diffraction particle size measurement instrument Mastersizer 3000+. Mastersizer 3000+utilizes integrated artificial intelligence and data science driven software solutions, providing method development support, data quality feedback, instrument monitoring, and troubleshooting recommendat...

    2024-03-22
    Voir la traduction
  • The "white" laser device from startup Superlight Photonics will completely transform imaging

    Superlight Photonics, a start-up company headquartered in Enshurd, has developed a broadband laser chip that can replace the bulky and power consuming technology currently used in advanced imaging and metering equipment.This idea suddenly appeared in his mind, while moving his other belongings from Germany to his new home in Enschede. During his doctoral research at the Max Planck Institute of Mul...

    2023-10-28
    Voir la traduction