Français

Laser technology helps wafer bonding, creating a cutting-edge laser system production factory

341
2024-06-19 15:17:30
Voir la traduction

Recently, Coherent LaserSystems, the global leader in laser and photon solutions, and Fraunhofer IZM-ASSID jointly announced that they have reached a strategic partnership to develop and optimize alternative bonding and debonding technologies for advanced CMOS and heterogeneous integrated applications (including quantum computing), in which laser technology plays a crucial role.

 



It is reported that EV Group (EVG) is a leading supplier of wafer bonding and lithography equipment in the MEMS, nanotechnology, and semiconductor markets. Fraunhofer IZM-ASSID (All Silicon System Integration Dresden) is a division of Fraunhofer IZM, providing world leading application research in semiconductor 3D wafer level system integration.

It is reported that both parties have jointly built an advanced laser system production factory in Lubeck, Germany. This factory not only demonstrates the outstanding capabilities of both parties in technological innovation and green manufacturing, but also sets a new benchmark for the global laser industry.
In this collaboration, German construction company Siemke&Co Br ü cken (SBI) serves as the general contractor responsible for the construction of the entire facility. The new facilities will include approximately 2600 square meters of cleanroom, 1900 square meters of cleanroom expansion area, 1100 square meters of laboratory space, and over 3750 square meters of office, storage, and technical space. The new cleanroom of Coherent LaserSystems is scheduled to be completed in December 2025 and will meet the very demanding ISO Level 6 classification requirements.

In the laser industry, clean rooms have special requirements for particle sensitive components, and even the smallest particle deviation can have a significant impact on product quality and function.

Maximilian Busch, Sales and Engineering Director of the Building Technology Business Unit at ENGIE Germany, said, "Cleanrooms have special requirements in terms of personal, product, and environmental protection. Our ENGIE Germany company is very proud to have achieved a perfectly coordinated concept for Coherent LaserSystems, meeting the cleanliness requirements of production while also setting new standards for cost-effectiveness and sustainability of cleanrooms."

To achieve the high standard cleanliness requirements of ISO 6, the ENGIE expert team will use their own top components and filter units. In addition, the new facilities also focus on energy efficiency. Germany's ENGIE will install a photovoltaic system with a peak output of 230 kilowatts on the roof of the building, achieving complete electricity supply from renewable energy. Meanwhile, the environmentally friendly heat recovery technology provided by sister company ENGIE Refrigeration will provide cooling supply for two water-cooled quantum refrigeration machines, with a total cooling capacity of 2 megawatts, and meet all heating needs of the building.

Busch concluded, "In the new cleanroom of Coherent LaserSystems, we have successfully combined the highest standards of functionality, sustainability, and the right concepts to demonstrate outstanding performance even in sensitive environments. This not only sets an example for the entire industry, but also fulfills our ENGIE proposition of accompanying customers towards climate neutrality in the best way possible."

ENGIE Germany has over 30 years of rich experience in clean room technology, and this collaboration with Coherent LaserSystems once again proves its outstanding strength in demanding industries such as optics, laser technology, pharmaceuticals, biotechnology, chemicals, plastics, and automobiles.
Fraunhofer IZM-ASSID is installing the EVG 850 DB fully automatic UV laser debonding and cleaning system at its Advanced CMOS and Heterogeneous Integrated Saxony Center (CEASAX) located in Dresden, Germany. It is reported that the EVG850 DB fully automatic ultraviolet laser debonding and cleaning system can achieve high-throughput and low-cost room temperature debonding for ultra-thin and stacked fan-shaped packaging. It integrates solid-state ultraviolet lasers and proprietary beam shaping optical devices to achieve optimized powerless carrier emission.

Fraunhofer IZM-ASSID is a leading research and development partner in the field of heterogeneous 3D wafer level system integration, capable of implementing 3D intelligent systems. It has a fully equipped 300mm wafer production line for advanced wafer level packaging, ISO certified, and provides industrial compatible process equipment for processing 200mm and 300mm wafers. On this basis, Fraunhofer IZM Dresden factory provides customers with process and technology development through prototype production and small batch production.

EV Group is a leading supplier of manufacturing equipment and process solutions for semiconductors, microelectromechanical systems (MEMS), compound semiconductors, power devices, and nanotechnology devices. The main products include wafer bonding, thin wafer processing, lithography/nanoimprint lithography (NIL) and metrology equipment, as well as photoresist coating machines, cleaning machines, and detection systems.
Temporary wafer bonding is a widely used method to ensure the processing of thin wafers (silicon thickness below 100 microns), which is crucial for 3D ICs, power devices, and Fan Out Wafer Level Packaging (FOWLP), as well as handling fragile substrates such as compound semiconductors.

The debonding of the carrier wafer is a necessary step in preparing the device wafer, in order to separate and integrate the mold into the final device or application. Fraunhofer IZM-ASSID can complete these debonding processes completely on its own using EVG850 DB, greatly reducing the development time of the optimal process flow for various adhesive systems. On the contrary, this will enable Fraunhofer IZM-ASSID to customize processes according to the specific needs of numerous customers.

Source: OFweek

Recommandations associées
  • Laser based ultra precision gas measurement technology

    Laser gas analysis can achieve high sensitivity and selectivity in gas detection. The multi-component capability and wide dynamic range of this detection method help analyze gas mixtures with a wide concentration range. Due to the fact that this method does not require sample preparation or pre concentration, it is easy to adopt in the laboratory or industry.Gas analysis is crucial for determining...

    2024-01-03
    Voir la traduction
  • Aston University is the first to adopt innovative laser detection technology using MEMS mirrors

    The School of Engineering and Physical Sciences at Aston University, located in Birmingham, UK, is at the forefront of exploring innovative laser detection methods and turbulence simulation. The plan revolves around the utilization of micro electromechanical mirrors, which have had a significant impact on various scientific fields over the past two decades.MEMS reflectors have gained widespread re...

    2024-03-07
    Voir la traduction
  • Leya Invents Next Generation Agricultural Blue Laser Weeding Technology

    Laudado&Associates LLC (L&A), an agricultural technology development company headquartered in California, announced the Autonomous Agricultural Solutions Conference held at FIRA Robotics&last week in Salinas, California.This patent pending technology is a completely new design, designed by L&A, aimed at maximizing the commercial feasibility of laser weeding and thinning. It utilize...

    2023-09-27
    Voir la traduction
  • Progress in Laser Physics: Reducing Residual Amplitude Modulation for Accurate Measurement

    Driven by the pioneering work of scientists such as John Young Hall, significant progress has been made in precision measurement in the field of laser physics. His contribution to laser frequency stability and precise measurement using lasers has led to groundbreaking techniques that significantly reduce residual amplitude modulation.John Hall's research focuses on understanding and manipulating s...

    2024-03-18
    Voir la traduction
  • Researchers have reinvented laser free magnetic control

    In a significant advancement in material physics, researchers from Germany and the United States have theoretically demonstrated that only extremely thin materials need to be α- RuCl3 can be placed in an optical cavity to control its magnetic state.This discovery may pave the way for new methods of controlling material properties without the use of strong lasers.The Role of Optical Vacuum W...

    2023-11-09
    Voir la traduction