Français

Korean POSTECH develops stretchable color adjustable photonic devices

700
2024-06-11 15:34:09
Voir la traduction

Liquid crystal elastomers are expected to be applied in displays, sensors, smart devices, and wearable devices.
A team from POSTECH University in South Korea, led by Professor Su Seok Choi and Professor Seungmin Nam, has developed a new type of stretchable photonic device that can control the wavelength of light in various directions.

This work was carried out by the Department of Electrical Engineering at the university and described in the journal Nature, Light: Science and Applications.


Structural colors are generated through the interaction between light and microscopic nanostructures, and do not rely on traditional color mixing methods to produce bright hues. Traditional displays and image sensors combine three primary colors (red, green, and blue), while structured color technology utilizes the inherent wavelength of light to produce more vivid and diverse color displays.

POSTECH's announcement states that this innovative method is being recognized as a promising technology in the nanooptics and photonics industries.

"Free adjustment of solid colors"
Traditional color mixing techniques using dyes or luminescent materials are limited to passive and fixed color representations. In contrast, adjustable color technology dynamically controls the nanostructure corresponding to a specific wavelength of light, allowing for free adjustment of pure colors.

Previous research was mainly limited to unidirectional color adjustment, typically converting colors from red to blue. Reversing this transition from blue to longer wavelength red has always been a major challenge.

The current technology only allows for adjustments to shorter wavelengths, making it difficult to achieve diverse color representations in the ideal free wavelength direction. Therefore, a new type of optical device capable of bidirectional and omnidirectional wavelength adjustment is needed to maximize the utilization of wavelength control technology.

Professor Cui's team solved these challenges by combining chiral * 1 liquid crystal * 2 elastomers (CLCE) with dielectric elastomer actuators (DEA). CLCE is a flexible material that can change the color of the structure, while DEAs cause flexible deformation of the dielectric in response to electrical stimulation.

The team optimized the actuator structure to combine with CLCE, enabling it to expand and contract, and developed a stretchable device with strong adaptability. The device can freely adjust the wavelength position in the visible spectrum, from shorter to longer wavelengths, and vice versa.

In their experiment, researchers demonstrated that their CLCE based photonic devices can use electrical stimulation to control the structural colors over a wide range of visible light wavelengths (from blue at 450nm to red at 650nm). Compared to previous technologies, this represents significant progress, which were limited to unidirectional wavelength tuning.

This study not only lays the foundation for advanced photonic devices, but also highlights their potential in various industrial applications.
Professor Cui commented, "This technology can be applied to displays, optical sensors, optical camouflage, direct optical simulation encryption, biomimetic sensors and smart wearable devices, as well as many other applications involving broadband electromagnetic waves beyond the light, color, and visible light bands. Our goal is to expand its application scope through continuous research.".

This study was supported by the Samsung Research and Incubation Center of Samsung Electronics and the Technology Innovation Program (Flexible Intelligent Variable Information Display) of the Korea Industrial Technology Planning and Evaluation Institute.

Source: Laser Net

Recommandations associées
  • Lumentum acquires Hong Kong optical module manufacturer Cloud Light to expand its influence in cloud data centers and network infrastructure

    On October 30th, Lumentum announced the acquisition of Hong Kong optical module manufacturer Cloud Light for $750 million (approximately RMB 5.48 billion), with the aim of expanding its influence in cloud data centers and network infrastructure.It is understood that Cloud Light is a Hong Kong company that provides various optical product solutions, mainly focusing on designing and manufacturing ad...

    2023-11-01
    Voir la traduction
  • Ultra fast plasma for all optical switches and pulse lasers

    Plasmology plays a crucial role in advancing nanophotonics, as plasma structures exhibit a wide range of physical properties that benefit from local and enhanced light matter interactions. These characteristics are utilized in many applications, such as surface enhanced Raman scattering spectroscopy, sensors, and nanolasers.In addition to these applications, the ultrafast optical response of plasm...

    2024-03-26
    Voir la traduction
  • Automated methods for background estimation in laser spectroscopy

    A new automated method for spectral background estimation in laser spectroscopy ensures the accuracy of quantitative analysis with minimal human intervention.When using laser-induced breakdown spectroscopy in spectral analysis, scientists may encounter various obstacles. The most common challenge faced by scientists when conducting elemental analysis is to optimize the interaction between the lase...

    2023-11-24
    Voir la traduction
  • Laser-induced graphene sensor can diagnose diabetes through breath samples

    In the U.S., one in five of the 37 million adults who has diabetes is not aware of it (according to the U.S. CDC – Centers for Disease Control & Prevention). Current methods of diagnosing diabetes and prediabetes usually require a visit to a doctor’s office or lab work, both of which can be expensive and time-consuming. Now, diagnosing diabetes and prediabetes may be as simple as breathing. ...

    09-08
    Voir la traduction
  • MKS Instruments will build a factory in Malaysia

    Recently, American semiconductor equipment manufacturer MKS Instruments announced plans to build a factory in Penang, Malaysia to support the production of wafer manufacturing equipment in the region and globally. This development plan will be divided into three stages to build a new factory, and it is expected to break ground and start construction in early 2025.Why choose to build a factory in M...

    2024-06-26
    Voir la traduction