Français

Luxiner launches LXR ultra short pulse laser platform

362
2024-06-11 15:19:17
Voir la traduction

Luxiner, the global leader in laser technology, has launched LXR ® The ultra short pulse (USP) laser platform is a revolutionary leap in industrial laser processing. The LXR platform provides unparalleled performance, versatility, and reliability, making significant progress in burst mode processing.

 



Micro Miracle Master
The world of miniaturization is flourishing due to the continuous improvement of accuracy. In this intricate dance, ultrafast laser microfabrication became a master, choreographing a symphony of power, pulse stability, and pulse duration, creating micro miracles.

Power: Driving force
Imagine a sculptor waving a chisel. In the field of ultrafast laser microfabrication, power is like a sculptor's powerful blow. It determines the amount of material removed by each laser pulse. Higher power allows for faster processing or deeper cutting, which is crucial for creating complex microchannels or drilling submicron holes. However, just as heavy hands can crush fine work, excessive power in laser microfabrication can lead to unnecessary thermal damage. The importance of the following two elements lies here.

Pulse to pulse stability: Unknown hero
The artistry of sculptors does not rely solely on brute force. Consistent and controllable travel is equally important. This unwavering focus translates into pulse to pulse stability in the world of ultrafast lasers. Both short-term and long-term stability play a crucial role. Short term stability can minimize power fluctuations within a single pulse sequence, ensuring that each pulse can provide consistent energy. This consistency is transformed into a uniform feature size and depth of the entire microfabrication area. On the other hand, long-term stability focuses on maintaining consistent power output for a longer period of time. Just as a sculptor maintains a stable hand throughout the entire work process, a stable laser can ensure consistent results throughout the entire process.

X factor: Input ultrafast pulse
Ultra fast laser microfabrication surpasses traditional cutting tools. It introduces a revolutionary element: pulse duration. Ultra fast pulses interact with materials at a molecular level in femtoseconds (billionths of a second to millionths of a second) to minimize heat transfer to surrounding materials. Imagine switching from a chisel to a surgical knife. The precise cutting of a surgical knife can remove the required materials while minimizing the impact on the surrounding area, thus achieving complex microscopic features without damaging the delicate structure.

Perfect Harmony: Unmatched Control and Speed
Power provides driving force, and the stability between pulses ensures unwavering focus. The ultra fast pulse duration is like a surgical knife. This harmonious interaction enables the LXR platform to create breakthrough micro features with unparalleled control and speed. It breaks through the boundaries of miniaturization and paves the way for the advancement of microelectronics, photonics, medical equipment, and biosensors.

LXR Platform: Innovative Symphony
Finally, Antonio Raspa, Product Manager of Luxiner Solid State Laser, stated, "LXR ®  The platform represents the crystallization of years of dedicated research and development. By combining excellent power, unwavering stability, and ultrafast pulse technology, we have created a truly groundbreaking solution that enables manufacturers to redefine the possibilities of microfabrication. With the help of the LXR platform, symphonies of power, accuracy, and speed are now coming into play.

Luxiner: Dedicated to innovation and customer success
Luxiner enjoys a deserved reputation in producing powerful and reliable laser sources. The LXR ® platform upholds this tradition by ensuring optimal uptime and productivity, and is backed by Luxiner's excellent customer support and service.

Source: Laser Net

Recommandations associées
  • Hyperspectral imaging technology: a comprehensive guide from principles to applications

    Hyperspectral imaging technology is a highly anticipated innovation in the field of science and engineering today. It not only integrates spectroscopy and imaging technology, but also has wide applications in various industries and research fields. This article will delve into the basic principles, working mechanisms, and applications of hyperspectral imaging in different fields.Introduction to hy...

    2024-04-16
    Voir la traduction
  • Lithuanian and Japanese researchers develop silver nanolaser

    Recently, researchers from Kaunas University of Technology (KTU) in Lithuania and the Tsukuba National Institute of Materials Science in Ibaraki, Japan, have collaborated to successfully develop a new type of nanolaser based on silver nanocubes.Although its structure is small and can only be observed through high-power microscopes, its potential application prospects are broad, and the research te...

    2024-12-24
    Voir la traduction
  • A new method for generating controllable optical pulse pairs using a single fiber laser

    Researchers from Bayreuth University and Konstanz University are developing new methods to control ultra short laser emission using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse interval of lasers is set by dividing each pulse into two pulses and delaying them at different, mechani...

    2024-01-15
    Voir la traduction
  • Researchers improve laser behavior by tying laser knots

    Researchers have created a new type of laser that, despite environmental noise and manufacturing defects, still performs as expected. Technically speaking, researchers have created a topology, time, and mode-locked laser. This study has the potential to improve sensors and computing hardware.A mode-locked laser emits light with regular pulses instead of a continuous beam. Pulses can be very counta...

    2024-03-07
    Voir la traduction
  • The INRS camera captures transient events and is suitable for various scenarios such as high-speed LiDAR systems for autonomous driving

    It is reported that the National Institutes of Sciences (INRS) of Canada has developed a camera platform that can achieve cheaper ultra fast imaging through the use of ready-made components, which can be used in various applications.This new device aims to address some of the limitations of current high-speed imaging, including parallax errors and potential damage from pulse illumination. Th...

    2023-10-07
    Voir la traduction