Français

Researchers use machine learning to optimize high-power laser experiments

378
2024-05-24 14:21:53
Voir la traduction

High intensity and high repetition lasers rapidly and continuously emit powerful bursts of light, capable of emitting multiple times per second. Commercial fusion energy factories and advanced compact radiation sources are common examples of systems that rely on such laser systems. However, humans are a major limiting factor as their response time is insufficient to manage such rapid shooting systems.

To address this challenge, scientists are searching for different ways to leverage the power of automation and artificial intelligence, which have real-time monitoring capabilities and can perform high-intensity operations.

A group of researchers from the Lawrence Livermore National Laboratory (LLNL), the Fraunhofer Laser Technology Institute (ILT), and the Aurora Infrastructure (ELI ERIC) are conducting an experiment at the ELI beamline facility in the Czech Republic to optimize high-power lasers using machine learning (ML).

Researchers trained LLNL's cognitive simulation development ML code on laser target interaction data, allowing researchers to adjust as the experiment progressed. The output is fed back to the ML optimizer, allowing it to fine tune the pulse shape in real time.

The laser experiment lasted for three weeks, each lasting about 12 hours. During this period, the laser fired 500 times at 5-second intervals. After every 120 shots, stop the laser to replace the copper target foil and check the vaporized target.

"Our goal is to demonstrate reliable diagnosis of laser accelerated ions and electrons from solid targets with high intensity and repeatability," said Matthew Hill, chief researcher at LLNL. "With the support of machine learning optimization algorithms' fast feedback to the laser front-end, the total ion yield of the system can be maximized."

Researchers have made significant progress in understanding the complex physics of laser plasma interactions using the most advanced high repetition rate advanced pulse laser system (L3-HAPLS) and innovative ML technology.

So far, researchers have relied on more traditional scientific methods, which require manual intervention and adjustment. With the help of machine learning capabilities, scientists are now able to analyze large datasets more accurately and make real-time adjustments during experiments.

The success of the experiment also highlights the ability of L3-HAPLS, L3-HAPLS is one of the most powerful and fastest high-intensity laser systems in the world. The experiment has proven that L3-HAPLS has excellent performance repeatability, focus quality, and extremely stable alignment.

Hill and his LLNL team spent about a year collaborating with the Fraunhofer ILT and ELI Beamlines teams to prepare for the experiment. The Livermore team utilized several new instruments developed under laboratory led research and development plans, including representative scintillation imaging systems and REPPS magnetic spectrometers.

The lengthy preparation work paid off as the experiment successfully generated reliable data that can serve as the foundation for progress in various fields including fusion energy, materials science, and medical treatment.

GenAI technology has always been at the forefront of scientific innovation and discovery. It is helping researchers break through the boundaries of scientific possibilities. Last week, researchers from MIT and the University of Basel in Switzerland developed a new machine learning framework to reveal new insights into materials science. Last week, artificial intelligence was proven to play an important role in drug discovery.

Source: Laser Net

Recommandations associées
  • Alliance unit Radiant High Tech Blue Purple Laser Assists in Ocean Exploration

    The ocean covers over 71% of the Earth's surface, and so far humans have only explored about 5% of the ocean. This means that there are still 95% of the depths of the ocean that we know nothing about, making it the most mysterious and unknown place on our planet.600 years ago, Zheng He led a fleet to play the prelude to the era of great navigation, laying the foundation for us to understand the wo...

    2023-11-06
    Voir la traduction
  • Creating Laser Sensors with Soap Bubbles: Discovery of Game Changing Rules

    Scientists from the University of Ljubljana in Slovenia have made groundbreaking discoveries and discovered a new innovative application of soap bubbles. By transforming these seemingly simple entities into laser sensors, they unleash the potential to detect electric fields and pressures. This extraordinary development has opened the door to various possibilities.Researchers at the University of L...

    2023-11-20
    Voir la traduction
  • The Influence of Laser Beam Intensity Distribution on Lock Hole Geometry and Process Stability under Green Laser Radiation

    Researchers from the University of Aveiro in Portugal and the School of Engineering at Porto Institute of Technology (ISEP) in Portugal reported a study on the influence of laser beam intensity distribution on the geometric shape and process stability of lock holes under green laser radiation. The relevant paper titled "Influence of Laser Beam Intensity Distribution on Keyhole Geometry and Process...

    03-26
    Voir la traduction
  • ABB will add optical sensors to four greenhouse gas monitoring satellites

    ABB has signed a third contract with the global leader in high-resolution space greenhouse gas monitoring, GHGSat, to manufacture optical sensors for its C12, C13, C14, and C15 satellites. It is reported that C12, C13, C14, and C15 satellites are scheduled to be launched into orbit in 2024.These new satellites will join GHGSat's expanding constellation for detecting and quantifying industrial gas ...

    2023-12-06
    Voir la traduction
  • Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity

    Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity - a quantum cavity is an optical device composed of two excellent small mirrors that can capture light in a small area for a long time.This model and its predictions can be used for the next generation of superradiance lasers. They can be used and observed in cutting-edge cavity/wa...

    2024-02-21
    Voir la traduction