Français

Researchers have developed the world's smallest silicon chip quantum photodetector

620
2024-05-21 14:22:53
Voir la traduction

Researchers at the University of Bristol have made significant breakthroughs in expanding quantum technology by integrating the world's smallest quantum photodetector onto silicon chips. The paper "A Bi CMOS Electron Photon Integrated Circuit Quantum Photodetector" was published in Science Advances.

In the 1960s, scientists and engineers were able to miniaturize transistors onto inexpensive microchips for the first time, marking a crucial moment in the beginning of the information age.

Now, scholars from the University of Bristol have demonstrated for the first time the integration of quantum photodetectors smaller than human hair onto silicon chips, bringing us closer to the era of quantum technology utilizing light.

The large-scale manufacturing of high-performance electronics and photonics is the foundation for achieving the next generation of advanced information technology. Understanding how to manufacture quantum technology in existing commercial facilities is a continuous international effort, and university research and companies around the world are working to address this issue.

Due to the expectation that building a single machine requires a large number of components, it is crucial for quantum computing to be able to manufacture high-performance quantum hardware on a large scale.

To achieve this goal, researchers from the University of Bristol have demonstrated a quantum photodetector that is implemented on a chip with a circuit area of 80 microns x 220 microns.

It is crucial that small size means that quantum photodetectors can be faster, which is the key to unlocking high-speed quantum communication and achieving high-speed operation of optical quantum computers.
The use of mature and commercialized manufacturing technologies helps to integrate other technologies such as sensing and communication as early as possible.

"These types of detectors are called homodyne detectors and can be seen everywhere in the application of quantum optics," explained Professor Jonathan Matthews, director of the Quantum Engineering Technology Laboratory leading the research.

"They operate at room temperature, and you can use them for quantum communication in extremely sensitive sensors such as state-of-the-art gravitational wave detectors, and some quantum computer designs will use these detectors."

In 2021, the Bristol team demonstrated how to connect photon chips with individual electronic chips to improve the speed of quantum photodetectors - now, through a single electron photon integrated chip, the team has further increased speed by 10 times while reducing footprint by 50 times.

Although these detectors are fast and small in size, they are also very sensitive.
"The key to measuring quantum light is sensitivity to quantum noise," explained Dr. Giacomo Ferrarti, the author.
"Quantum mechanics is responsible for the small, fundamental noise levels in all optical systems. The behavior of this noise reveals information about the types of quantum light propagating in the system, determines the sensitivity of optical sensors, and can be used to mathematically reconstruct quantum states. In our research, it is important to demonstrate that making detectors smaller and faster does not hinder their sensitivity in measuring quantum states."

The author points out that there is still more exciting research to be done in integrating other disruptive quantum technology hardware into chip scale. The use of new detectors requires improved efficiency and some work to be done to test the detectors in many different applications.

Professor Matthews added, "We have manufactured detectors using commercial foundries to make their applications easier to implement. While we are very excited about the impact of a range of quantum technologies, it is crucial that we, as a community, continue to address the challenge of scalable manufacturing with quantum technology.".

"If truly scalable quantum hardware manufacturing is not demonstrated, the impact and benefits of quantum technology will be delayed and limited."

Source: Laser Net

Recommandations associées
  • LM GROUP USA expands its North American office

    Recently, BLM GROUP USA, a leading manufacturer of laser tube and sheet metal processing equipment, announced that its North American headquarters in Novi, Michigan has officially started construction, with plans to add 65000 square feet of modern facilities. It is expected to be completed and put into use in the third quarter of 2025.The specific investment amount for this expansion has not been ...

    2024-08-03
    Voir la traduction
  • IPG Photonics announces 2024 financial loss of $162 million

    On February 11th, global industrial fiber laser giant IPG Photonics announced its financial performance for the fourth quarter and full year of 2024. Annual sales have fallen below the $1 billion mark for the first time, with a year-on-year decline of 24% and a pre tax loss of up to $162 million. As an industry leader, IPG's financial report not only reflects the deep adjustment faced by the ind...

    02-13
    Voir la traduction
  • The physicist who built the ultrafast "attosecond" laser won the Nobel Prize

    Pierre Agostini, Ferenc Krausz, and Anne L'Huillier won the award for their ultra short optical pulses, which made close research on electrons possible.Ferenc Klaus, Anne Lullier, and Pierre Agostini (from left to right)Image sources: BBVA Foundation, Kenneth Ruona/Lund University, Ohio State UniversityThis year's Nobel Prize in Physics was awarded to three physicists - Pierre Agostini of Ohio St...

    2023-10-09
    Voir la traduction
  • Feasibility Study on Composite Manufacturing of Laser Powder Bed Melting and Cold Casting

    It is reported that researchers from the Technical University of Munich in Germany have reported a feasibility study on the composite manufacturing of EN AC-42000 alloy by combining laser powder bed melting and cold casting. The related research titled "Feasibility study on hybrid manufacturing combining laser based powder bed fusion and chill casting on the example of EN AC-42000 alloy" was publi...

    2024-06-06
    Voir la traduction
  • APE 2025 is about to take place

    The Asia Optoelectronic Expo 2025 (APE 2025) will be held from February 26 to 28, 2025 at the Marina Bay Sands Convention and Exhibition Centre in Singapore. It covers products such as information and communication, optics, lasers, infrared, sensing, display, quantum, and is a one-stop optoelectronic comprehensive platform for the optoelectronic industry and application fields; The exhibition focu...

    02-18
    Voir la traduction