Français

Laser printing on fallen leaves can produce sensors for medical and laboratory use

553
2024-05-16 17:18:22
Voir la traduction

The manufacturing of sensors through 3D printing combines speed, design freedom, and the possibility of using waste as a substrate. In the circular economy model, various results have been achieved, and typically discarded residues are used as low-cost resources. A research team in Brazil has proposed a highly creative solution that involves printing electrochemical sensors on fallen leaves. The team is led by Bruno Janegitz, Professor and Head of Sensors, Nanopharmaceuticals and Nanostructured Materials Laboratory (LSNANO) at the Federal University of San Carlos (UFSCar), and Thiago Paix ã o, Professor and Head of Electronic Tongue and Chemical Sensor Laboratory (L2ESQ) at the University of S ã o Paulo (USP). This initiative has received support from FAPESP and was emphasized in an article published in the journal ACS Sustainable Chemistry and Engineering.

Janegitz said, "We used CO2 (carbon dioxide) lasers to print designs of interest on leaves through pyrolysis and carbonization. Therefore, we obtained an electrochemical sensor for measuring levels of dopamine and paracetamol. It is very easy to operate. A drop of solution containing one of the compounds is placed on the sensor, and a potentiostat connected to it displays the concentration."

Simply put, the laser beam burns the leaves during the pyrolysis process, converting their cellulose into graphite, which is printed on the leaves in a shape suitable for use as a sensor. During the manufacturing process, the parameters of the CO2 laser, including laser power, pyrolysis scanning rate, and scanning gap, are systematically adjusted to obtain the best results.

Janegitz said, "These sensors have been characterized through morphology and physicochemical methods, allowing for a detailed exploration of the new carbonized surfaces generated on the leaves."

"In addition, the applicability of the sensor was confirmed through testing dopamine and paracetamol in biological and drug samples. For dopamine, the system is effective in the linear range of 10-1200 micromoles per liter, with a detection limit of 1.1 micromoles per liter. For paracetamol, the system has a linear range of 5-100 micromoles per liter, with a detection limit of 0.76."

In tests involving dopamine and paracetamol, as a proof of concept, the electrochemical sensor extracted from fallen leaves achieved satisfactory analytical performance and noteworthy reproducibility, highlighting its potential as a substitute for traditional substrates.

Replacing traditional materials with fallen leaves has produced significant benefits in reducing costs and, most importantly, environmental sustainability. Janegitz said, "These leaves would have been incinerated or at best composted. Instead, they are being used as substrates for high-value devices, which is a significant advancement in the manufacturing of next-generation electrochemical sensors."

Source: Laser Net

Recommandations associées
  • Laserline completes 70% equity acquisition of WBC Photonics

    Recently, Laserline, a leading semiconductor laser manufacturer in Germany, announced that it has completed the acquisition of a 70% stake in WBC Photonics, a Boston based laser technology expert, marking a significant strategic expansion for Laserline. Through this transaction, Laserline not only expands its product portfolio to include blue laser systems with excellent beam quality (better tha...

    2024-09-20
    Voir la traduction
  • The United States is expected to use "AI+lasers" to deal with space debris in the future

    Due to the increasing threat of space debris in low Earth orbit around the Earth, space agencies around the world are becoming increasingly concerned about this. According to a new study funded by the National Aeronautics and Space Administration (NASA), it may be possible to send space debris that may be at risk of colliding with orbiting spacecraft to safer orbits through a laser network deploye...

    2023-10-20
    Voir la traduction
  • Researchers at the Technion-Israel Institute of Technology have developed coherently controlled spin optical lasers based on single atomic layers

    Researchers at the Technion-Israel Institute of Technology have developed a coherently controlled spin optical laser based on a single atomic layer.This discovery was made possible by coherent spin-dependent interactions between a single atomic layer and a laterally constrained photonic spin lattice, which supports a high-Q spin valley through Rashaba-type spin splitting of photons of bound states...

    2023-09-12
    Voir la traduction
  • Breakthrough 8-channel 915nm SMT pulse laser, ushering in a new era of laser radar applications

    The 8-channel 915nm SMT pulse laser can enhance the long-range laser radar system of autonomous vehicle;An 8-channel QFN package certified by AEC-Q102, featuring high performance and efficiency, utilizing proprietary wavelength stabilization technology from AMS Osram;Based on over 20 years of experience in pulse laser technology.Shanghai, China, August 8, 2024- AMS, a leading global optical soluti...

    2024-08-09
    Voir la traduction
  • Integra Optics launches groundbreaking XGS-PON and GPON combined OLT SFP+optical transceivers

    Infinite Electronics brand and innovative operator level global supplier of fiber optic components, Integra Optics, announced the launch of its latest innovative product, the XGS-PON and GPON combination OLT SFP+BiDi optical transceiver module. This module integrates the passive optical network OLT and GPON OLT optical modules of XG (S), promoting seamless network rate deployment within the optica...

    2024-04-11
    Voir la traduction