Français

Frankfurt Laser Company launches a new high-power fiber coupled laser diode

716
2024-05-13 13:45:58
Voir la traduction

The global leader in laser technology solutions, Frankfurt Laser, has launched a new series of high-power fiber coupled laser diodes, setting a new standard in the laser industry. The innovative 9XXnm high-power fiber coupled laser diode aims to optimize fiber laser pump source applications, providing unparalleled efficiency, compactness, and brightness.

The New Era of Laser Technology
The latest product of Frankfurt Laser Company adopts cutting-edge coupling technology and advanced thermal management system design. These enhanced features ensure that diodes not only meet but also exceed the strict requirements of modern laser applications.
"Our new 9XXnm series is a game changer in the field of laser technology," said Dr. Vsevolod Mazo, CEO of Frankfurt Laser. "These high-power diodes are not only powerful and efficient, but also very compact and suitable for integration into various systems."

Product features
Power level: The new diode has various power levels ranging from 100W to impressive 1 kW, which can meet a wide range of industrial, medical, and research needs.
Compact size: Ultra compact, OEM friendly packaging can be easily integrated into existing and new systems, providing manufacturers with flexibility and convenience.
Core diameter: Customers can choose 100 μ M and 220 μ The core diameter of m ensures optimal performance in various applications.

Diversified applications
The versatility of these diodes makes them an ideal choice for many applications:
Fiber laser pumping: improving the performance and efficiency of fiber lasers.
Laser material processing: very suitable for cutting, carving, and other material processing technologies.
Medical technology: supporting advanced medical procedures and research.
Scientific research: achieving new discoveries and innovations in scientific exploration.

Source: Laser Net

Recommandations associées
  • French researchers develop spiral lenses with optical vortex effects

    As humans stand at the forefront of a new era of space exploration, the National Laboratory of the International Space Station is taking the lead in carrying out a groundbreaking initiative that may completely change the way we understand and utilize space for research and development. In a recent development, Northrop Grumman's 20th commercial supply service mission has become an innovative light...

    2024-02-17
    Voir la traduction
  • TRUMPF utilizes a laser driven X-ray source to improve electric vehicle batteries

    In the future, electric vehicle battery manufacturers can further improve the durability and performance of electric vehicle batteries through compact X-ray sources. The XProLas development partnership has now begun to develop these laser driven X-ray sources under the leadership of TRUMPF. The first batch of demonstration systems will be completed in 2026. In the future, manufacturers will be abl...

    2024-03-01
    Voir la traduction
  • Filatek: Leading the Development of Laser, Shining "Additive Prince"

    In recent years, the field of laser technology has received widespread attention from the outside world. At that time, the Munich Shanghai Electronic Production Equipment Exhibition was successfully held in Shanghai, and Suzhou Feilaitek Laser Technology Co., Ltd. (hereinafter referred to as "Feilaitek"), a leading enterprise in the field of industrial laser 3D dynamic focusing systems, appeared a...

    2024-04-12
    Voir la traduction
  • The world's first tunable wavelength blue semiconductor laser

    Recently, researchers from Osaka University in Japan have developed the world's first compact, wavelength tunable blue semiconductor laser in a new study. This breakthrough paves the way for far ultraviolet light technology and brings enormous potential for applications such as virus inactivation and bacterial disinfection. The research results have been published in the journal Applied Physics Le...

    2024-11-23
    Voir la traduction
  • Topological high-order harmonic spectroscopy in Communications Physics

    It is reported that researchers from the University of Salamanca in Spain have demonstrated a high-order harmonic spectroscopy scheme generated by the interaction between a structured driving beam and a crystal solid target. This work promotes the topological analysis of high-order harmonic fields as a spectroscopic tool to reveal nonlinearity in the coupling of light and target symmetry. The rele...

    2024-01-15
    Voir la traduction