Français

A new type of flexible reflective mirror can improve the performance of X-ray microscopy

876
2024-05-06 16:31:46
Voir la traduction

A research team in Japan has designed a flexible and shapable X-ray reflector, achieving significant accuracy and higher stability at the atomic level.
This new technology, developed by Satoshi Matsuyama and Takato Inoue from the Graduate School of Engineering at Nagoya University, in collaboration with the Japanese Institute of Physical and Chemical Research and JTEC Corporation, improves the performance of X-ray microscopy and other technologies that use X-ray mirrors. The relevant results were published in the journal Optica.

A new type of deformable mirror for X-ray microscopy, achieving high image resolution through wavefront correction.


X-ray microscope is an advanced imaging tool that serves as a bridge between electron microscopy and optical microscopy. It uses X-rays that provide better resolution than light and can penetrate thick samples that electrons cannot penetrate. This enables imaging of structures that are difficult to see with other microscopy techniques.

X-ray microscopes have high resolution, making them particularly important in fields such as materials science and biology, as they can observe the composition, chemical state, and structure inside samples.

Reflectors play a crucial role in X-ray microscopy. They can reflect X-ray beams and perform high-resolution imaging on complex structures. High quality images and accurate measurements are essential, especially in cutting-edge scientific fields such as catalyst and battery detection.
However, due to the small wavelength of X-rays, they are easily distorted due to small manufacturing defects and environmental influences. This will generate wavefront aberrations, thereby limiting the resolution of the image. Matsuyama and his collaborators solved this problem by creating a deformable mirror and adjusting its shape based on the detected X-ray wavefront.

The X-ray microscopy images showed higher resolution after using the new deformable mirror. The left and right images are the images before and after shape correction, respectively.

In order to optimize their mirrors, researchers studied piezoelectric materials. These materials are very useful because they can deform or change shape when an electric field is applied. In this way, even if there is a slight deviation in the detected radio waves, the material can reshape its own shape and respond accordingly.

After considering various compounds, researchers chose lithium niobate single crystal as a shape changing mirror. Single crystal lithium niobate is very useful in X-ray technology because it can expand and contract under the action of an electric field, and form a high reflective surface through polishing. This allows it to serve as both an actuator and a reflective surface, simplifying the equipment.

Matsuyama said, "Traditional X-ray deformable mirrors are made by bonding glass substrates and PZT plates. However, connecting different materials together is not ideal and can lead to instability. To overcome this problem, we used single crystal piezoelectric materials, which are made of uniform materials and do not require bonding, thus having extremely high stability. Due to their simple structure, the mirror can freely deform, achieving atomic level accuracy. In addition, this accuracy can be maintained for 7 hours, confirming its extremely high stability.".

When testing their new equipment, Songshan's team found that their X-ray microscope exceeded expectations. Its high resolution makes it particularly suitable for observing microscopic objects, such as semiconductor device components.

Compared to the spatial resolution of traditional X-ray microscopes (usually 100 nanometers), their technology has the potential to develop microscopes with a resolution about 10 times higher (10 nanometers) because aberration correction makes them closer to the ideal resolution.
Matsuyama said, "This achievement will drive the development of high-resolution X-ray microscopes, which have always been limited by manufacturing process accuracy. These mirrors can also be applied to other X-ray equipment, such as lithography equipment, telescopes, CT in medical diagnosis, and X-ray nanobeam formation."

Related links: https://phys.org/news/2024-05-mirror-flexibly-ray-microscopes.html

Source: Physicist Organization Network

Recommandations associées
  • The breakthrough of coherent two-photon lidar overcomes distance limitations

    Schematic diagram of experimental setupNew research has revealed advances in light detection and ranging technology, providing unparalleled sensitivity and accuracy in measuring the distance of distant objects.This study was published in the Physical Review Letters and was the result of a collaboration between Professor Yoon Ho Kim's team at POSTECH in South Korea and the Center for Quantum Scienc...

    2023-12-08
    Voir la traduction
  • Google works with magic leap on AR optics and manufacturing

    In the 2010s, Magic leap is one of the most hyped augmented reality companies, with a lot of money, including from Google. When the magic leap one headset was introduced in 2018, it was not a technological breakthrough in display technology that was once derided. Since then, Magic leap has persevered and has now signed a "multifaceted strategic technology partnership" with Google.Google announced ...

    2024-05-31
    Voir la traduction
  • Significant progress has been made in the manufacturing and measurement of EUV lithography light source collection mirrors

    Summary:To filter out infrared light from the driving light source in the extreme ultraviolet lithography (EUVL) light source system, a rectangular grating structure needs to be fabricated on the surface of the collection mirror. However, the collection mirror grating usually undergoes deformation during the manufacturing process, resulting in a decrease in filtering efficiency. The process errors...

    04-02
    Voir la traduction
  • Netherlands Integrated Photonics Ecological Platform Raises € 60 million to Support European Photonics Startups

    PhotonVentures, based in Eindhoven, the Netherlands, has announced the launch of a venture capital fund designed to help early-stage photonic chip startups and scale-up businesses.In the first round of funding, PhotonDelta, a Dutch photonic integrated circuit (PIC) pioneer, raised €60 million as the lead investor and numerous private investors. PhotonVentures said it plans to raise a total of...

    2023-09-02
    Voir la traduction
  • Bitsensing, a South Korean LiDAR solution provider, successfully raised 180 million yuan in funding

    Recently, Bitsensing, a leading provider of advanced radar solutions in South Korea, announced the successful completion of Series B financing, with a financing amount of up to $25 million (approximately RMB 181.6 million).This major investment is led by a series of well-known venture capital firms and strategic investors, which not only demonstrates Bitsensing's leading position in the radar tech...

    2024-06-27
    Voir la traduction