Français

Launching the world's strongest laser at a cost of 320 million euros

467
2024-04-03 18:05:29
Voir la traduction

   Beijing, April 1st (Reporter Liu Xia) - The world's most powerful laser has been activated recently. On March 31st, the Physicist Organization Network reported that the system can enable laser pulses to reach a peak of 10 terawatts (1 terawatt=100 terawatts=1015 watts) within 1 femtosecond (1000 trillions of a second), which is expected to promote revolutionary progress in multiple fields from medicine to basic physics and space.

   The high-tech center to which this laser belongs is located in Romania, mainly funded by the European Union, with a cost of 320 million euros, utilizing the invention of French scientists such as Gerald Muru.

   Scientists have been committed to manufacturing more powerful lasers. In the mid-1980s, the Muru team invented Chirped Pulse Amplification (CPA) technology, which can increase the power of lasers while maintaining their intensity. Its working principle is to stretch an ultra short laser pulse in time, amplify it, and then squeeze it together again to create the shortest and strongest laser pulse to date.

   Mulu was awarded the 2018 Nobel Prize in Physics for developing a method for producing high-intensity, ultra short light pulses. This technology is expected to be widely applied in fields such as nuclear physics and particle physics, medicine, etc. In the medical field, this technology has promoted the development of cataract and refractive surgery.

   Muru pointed out that they will start with a tiny glowing "seed" with minimal energy, which will be magnified millions of times. They will use these ultra-high voltage pulses to generate more compact and cheaper particle accelerators to destroy cancer cells. Other possible applications include processing nuclear waste by reducing its radioactive duration, cleaning up accumulated debris in space, and so on.

Recommandations associées
  • Accelerating electrons by emitting laser light into a nanophotonic cavity

    The laser driven particle accelerator on silicon chips was created by two independent research groups. With further improvements, this dielectric laser accelerator can be used in medicine and industry, and even in high-energy particle physics experiments.Accelerating electrons to high energy is usually accomplished over long distances in large and expensive facilities. For example, the electron ac...

    2023-10-28
    Voir la traduction
  • Research and investigate the thermal effects of 3D stacked photons and electronic chips

    Hybrid 3D integrated optical transceiver. (A, B) Test setup: Place the photon chip (PIC) on the circuit board (green), and glue the electronic chip (EIC) onto the top of the photon chip. (C) It is the cross-section of the EIC-PIC component with micro protrusions. (D) Display the mesh of the finite element model.The latest progress in artificial intelligence, more specifically, is the pressure plac...

    2023-12-09
    Voir la traduction
  • Reshaping the Sky: Laser Scanning Drones Innovate Data Collection

    Imagine soaring above the Earth, the world unfolds in patterns and reliefs, and the terrain whispers its secrets in the wind. Now imagine capturing these whispers and translating them into a digital language to draw our world map with unprecedented accuracy. Welcome to the forefront of laser scanning drones, a technological ballet in the sky where the fusion of flight and laser precision is reshap...

    2024-04-07
    Voir la traduction
  • Stuttgart University researchers develop a new high-power 3D printed micro optical device for compact lasers

    Researchers from the Fourth Institute of Physics at the University of Stuttgart have demonstrated the feasibility of 3D printed polymer based micro optical devices in harsh laser environments.This study was detailed in the Journal of Optics, outlining the use of 3D printing technology to directly manufacture microscale optical devices on fibers, seamlessly integrating fibers and laser crystals int...

    2024-01-09
    Voir la traduction
  • The Linac Coherent Light Source II X-ray Laser in the United States has completed over a decade of upgrading and emitted the first X-ray with a record breaking brightness

    According to reports, the Linac Coherent Light Source II (LCLS-II) X-ray laser at the Stanford SLAC National Accelerator Laboratory in the United States has just completed an upgrade that took more than a decade. After a facelift, it has become the world's brightest X-ray facility and emitted the first record breaking X-ray, allowing researchers to record the behavior of atoms and molecules in bio...

    2023-09-20
    Voir la traduction