Français

The Application of Femtosecond Laser in Precision Photonics Manufacturing

817
2024-04-02 14:16:59
Voir la traduction

The femtosecond laser emits ultra short optical pulses with a duration of less than one picosecond, reaching the femtosecond level (1fs=10-15s). The characteristics of femtosecond laser are extremely short pulse width and high peak intensity.

Ultra short pulse trains can minimize residual heat, ensure precise material processing, and minimize incidental damage. Its high peak intensity can induce nonlinear optical interactions such as multiphoton ionization and plasma formation, providing precise spatial control of laser energy for various applications.

The nonlinear confinement effect of femtosecond laser can achieve nanoscale resolution, with characteristics smaller than the diffraction limit of light. These lasers have a wide range of applications and can be used in various materials, including metals, semiconductors, ceramics, polymers, and composite materials, without the need for masks or photoresists. The focusing ability of femtosecond lasers in transparent materials also helps to create complex three-dimensional (3D) structures, which is crucial for manufacturing integrated photonic chips.

In short, femtosecond laser is an ideal choice for precision microfabrication and photon manufacturing.



The main applications of femtosecond laser in precision photon manufacturing are as follows:

01
Photolithography of photonic crystals
It is crucial to accurately control the unit structure and gaps at the nanoscale in order to effectively control the light in photonic crystals in the near-infrared and visible light ranges. Femtosecond lasers can directly manufacture three-dimensional micro/nanostructures in transparent materials, utilizing their ultra short pulse duration to achieve ultra-high precision, and perform excellently in manufacturing these structures.

A study published in "Light: Science and Applications" confirms this by introducing a method for manufacturing photonic crystal structures using nanoscale femtosecond laser multi beam lithography technology. Researchers focused a controllable multi beam light field on the interior of the crystal and combined it with chemical etching. This method can precisely control the structural units and gaps of sub wavelength sizes, overcoming the limitations of single beam processing.

The proposed method is both economical and simple, and can achieve three-dimensional photonic crystal structures within crystals, with the potential to be applied in the fields of optical communication and manipulation.

02
Simplify the manufacturing of periodic nanostructures
With the advancement of materials science and nanomanufacturing technology, people have begun to explore periodic nanostructured surfaces for advanced photonics applications, such as plasma and dielectric element surfaces. Traditionally, the processing of these periodic surface structures (PSS) using photolithography methods is both complex and time-consuming.

However, focusing on femtosecond lasers provides a one-step, mask free, and efficient alternative method suitable for various materials. In this way, laser induced PSS (LIPSS) can be used to create features smaller than the wavelength of the laser.

Recent research, particularly on broadband gap transparent crystals such as lithium niobate, has demonstrated the potential of femtosecond lasers in manufacturing large-area LIPSS with enhanced light absorption through controlled heating strategies. This provides a promising approach for the precise manufacturing of dielectric crystals other than lithium niobate.

03
Design a three-dimensional photonic integrated structure
The femtosecond laser direct writing technology provides enormous potential for manufacturing three-dimensional photonic integrated circuits (PICs) on transparent substrates. However, a key challenge faced by this technology is how to achieve smooth and significant refractive index changes within the laser irradiation area, which hinders the development of compact photonic integrated circuits.

A study published in Science China Physics, Mechanics&Astrology has solved this problem by proposing a significant method to suppress the bending loss of small curvature radius waveguides, paving the way for reducing the size of three-dimensional photonic integrated circuits.

The proposed method includes the use of femtosecond laser direct writing technology to engrave multiple modified tracks in fused silica, thereby enhancing the refractive index contrast and successfully reducing the bending loss in the bent waveguide. This breakthrough is expected to improve the integration density and flexibility of three-dimensional photonic devices.

04
Three dimensional micro nano structures in dielectric materials
Femtosecond laser induced chemical etching (FLICE) selectively etches laser modified areas by utilizing laser-induced changes in chemical properties. This allows complex three-dimensional microstructures and nanostructures to be directly written into the interior of dielectric materials. FLICE has been used to create embedded hollow microstructures for microfluidics and three-dimensional optofluids in glasses.
Recent work has achieved over 100000 ultra-high etching selectivity in crystals such as YAG and sapphire. This enables the realization of three-dimensional photonic lattices, waveguides, and nanopores at the nanoscale without the need for crystal damage.

05
Surface lithography technology
As a maskless and high-precision 3D processing technology, femtosecond laser processing can be used for surface lithography on materials such as thin films of lithium niobate. This breakthrough has successfully overcome the challenges in material integration and achieved the manufacturing of high-performance photonic components.

For example, researchers have used femtosecond laser assisted chemical mechanical polishing (CMP) lithography technology to manufacture low loss waveguides and high Q-value microresonators on lithium niobate chips. This processing strategy has strong potential to functionalize different crystal platforms for integrated photonics.

06
High speed, high-quality silicon ablation
The use of femtosecond laser for silicon ablation refers to the precise removal of materials on silicon substrates using an ultra short pulse group. This process is crucial in precision photonics as it can create complex structures with minimal thermal damage, thereby producing high-quality optical devices such as optical waveguides.

Researchers from the Advanced Photonics Center of the Institute of Physics and Chemistry have developed a new technology called BiBurst mode, which uses GHz femtosecond laser pulse quenching grouped by MHz envelope lines to achieve efficient and high-quality silicon ablation. These research findings are published in the International Journal of Extreme Manufacturing.

The research team has demonstrated that using the BiBurst mode, the rate of silicon ablation is 4.5 times faster than that of single pulse mode, and the quality is better. The mechanism involves the absorption of absorption points generated by subsequent pulses on previous pulses, thereby improving efficiency. This breakthrough will have a significant impact on the basic research and industrial applications of femtosecond laser processing, thereby improving throughput and micro machining accuracy.

07
Manufacturing quantum photon processors
Femtosecond laser writing (FLW) stands out in the field of passive and reconfigurable integrated photonic circuits due to its low cost, simplicity, and rapid prototyping capabilities. The rapid reconfigurability of this technology makes it of great value for the initial evaluation of optical laboratories.

A study published in Applied Physics Letters used FLW technology to manufacture a programmable dual qubit quantum photon processor. The FLW quantum processor manufactured has achieved high fidelity, with single qubit gates reaching 99.3% and double qubit CNOT gates reaching 94.4%.
Despite challenges such as propagation loss and low refractive index comparison, the coupling loss between FLW chips and standard single-mode fibers is naturally very low, which provides advantages for quantum photon experiments.

Conclusion
Femtosecond laser processing is rapidly becoming a key technology for advancing photon manufacturing, bringing new possibilities for design and structure. The current development indicates that the influence of femtosecond laser processing in industry and academia will continue to expand in the coming years.

Source: Guangxing Tianxia

Recommandations associées
  • Breakthrough! Extending the lifespan of solar panels to 50 years using lasers

    Recently, the National Renewable Energy Laboratory (NREL) under the US Department of Energy has made a revolutionary breakthrough by developing a concept validation method aimed at completely removing polymers from solar panel manufacturing, thereby achieving more efficient and environmentally friendly recycling.Solar panels have always been praised for their recyclability. However, the thin plast...

    2024-04-30
    Voir la traduction
  • Bodor Laser: Laser Cutters Rank First in Global Sales for Six Consecutive Years

    On February 27, at Bodor Laser's global headquarters base in Licheng District, Jinan City, three automated production lines were operating at full capacity, struggling to meet the overwhelming demand. Lu Guohao, Secretary of the Board and Director of the President's Office at Bodor Laser, revealed that the company's laser cutter shipments exceeded 8,000 units in 2024, securing the top spot in glob...

    03-10
    Voir la traduction
  • Jingyi Optoelectronics launches a transmittance detector to detect the near-infrared transmittance characteristics of plastic materials

    Laser welding plastic transmittance tester is an important industrial testing equipment used to measure the transmittance of plastic after welding, in order to evaluate welding quality and product performance. With the widespread application of plastic products in various fields, the requirements for plastic welding quality and transparency are also increasing. Therefore, laser welded plastic tran...

    2024-04-11
    Voir la traduction
  • EOS and AMCM will open a new UK Additive Manufacturing Excellence Center

    The University of Wolverhampton (UK), along with global 3D printing leaders EOS and AMCM, will collaborate to establish a new Centre of Excellence (AM) for Additive Manufacturing in the UK. This partnership will provide cutting-edge technology from EOS and AMCM, and focus on developing advanced materials and processes for high demand applications in industries such as aerospace, automotive, aerosp...

    2024-04-15
    Voir la traduction
  • Mazak will showcase high-speed fiber lasers on Tube 2024

    Yamazaki Mazak designed the FT-150 fiber laser tube processing machine for high-speed cutting of small and medium-sized diameter pipes, for use in Tube 2024. The machine tool will be controlled by a new type of pipe cutting CNC, which will be exhibited for the first time in Europe.Tube 2024 will be held from April 15th to 19th in Dusseldorf, Germany. Mazak will be exhibited at booth C17 in Hall 5....

    2024-03-16
    Voir la traduction