Français

Romania Center launches the world's most powerful laser

207
2024-04-01 14:02:09
Voir la traduction

Are you ready? The signal is out! "
In the control room of a research center in Romania, engineer Antonio Toma has activated the world's most powerful laser, which is expected to make revolutionary progress in various fields from the health sector to space. The laser located in the center near the Romanian capital Bucharest is operated by the French company Thales and utilizes the invention of Nobel laureates.
Gerard Mourou from France and Donna Strickland from Canada were awarded the 2018 Nobel Prize in Physics for using the power of lasers to develop advanced precision instruments in corrective eye surgery and industry.


The Nobel Academy's award speech said, "The sharp laser beam provides us with a new opportunity to deepen our understanding of the world and shape it."

At the center, in front of the screen wall displaying the beam of light, Thomas checked a series of indicators before starting the countdown. On the other side of the glass, a long row of red and black boxes are equipped with two laser systems. 29 year old Toma told Agence France Presse in a recent live media interview, "I won't lie. Sometimes things can become a bit stressful."
"But working here is also very enjoyable. When the international research team arrived at the center, we were happy that we had achieved results," she added.

-"The incredible Odyssey"-
Nobel laureate Muru admitted that he was "deeply moved" by his "incredible adventure" - from where he stayed in the United States for 30 years to achieving this project in Europe. It originated from the European Infrastructure ELI project in the 2000s. 79 year old Muru said, "We start with a glowing seed with very, very little energy, and it will be magnified millions of times.".

Scientists have been committed to creating more powerful lasers.
However, by the mid-1980s, they encountered a bottleneck as they were unable to increase power without damaging the amplified beam. At that time, Muru and his student Strickland invented a technology called Chirped Pulse Amplification (CPA), which could increase power while maintaining strength safety. Its working principle is to timely stretch the ultra short laser pulse, amplify it, and then compress it together again, thereby generating the shortest and strongest laser pulse in the world's history. It has been applied in corrective ophthalmic surgery, but it also opens the way for scientists to continue breaking through the limits of laser power.
Muru said, "We will use these ultra strong pulses to produce more compact and cheaper particle accelerators to destroy cancer cells.".

-Laser Era-
He added that other possible applications include processing nuclear waste by reducing the duration of radioactivity, or cleaning up accumulated debris in space. For Muru, just as the last century was the electronic century, the 21st century will also be the laser century.
The scale of operation of the research center is dazzling.

The system is capable of reaching a peak of 10 petawatts (to the 15th power of 10 watts) in an ultra short period of time on the order of femtosecond (one billionth of a second). Franck Leibreich, Managing Director of Thales Laser Solutions, stated that "450 ton equipment" needs to be carefully installed to achieve "excellent performance levels.".

The high-tech building of the center costs 320 million euros (350 million US dollars), mainly funded by the European Union.
Thales called it the largest scientific research investment in Romanian history.
Meanwhile, countries such as France, China, and the United States are already advancing their own projects to manufacture more powerful lasers.

Source: Laser Net

Recommandations associées
  • Additive Manufacturing Software Market 2025: Analysis, Data, and Forecasting

    In March 2025, Additive Manufacturing Research (AMR) released its latest 3D printing market research report, "AM Software Markets 2025: Analysis, Data, and Forecast," which provides a comprehensive and in-depth analysis of the 3D printing software industry. The latest research findings indicate that global revenue from additive manufacturing (AM) software is expected to grow from $2.44 billion in ...

    03-17
    Voir la traduction
  • Two photon absorption quantum mechanism breaks through the resolution and efficiency limits of optical nanoprinting

    Recently, a research team from the School of Physics and Optoelectronic Engineering at Jinan University has elucidated for the first time the time-dependent quantum mechanism of two-photon absorption and proposed a two-photon absorption (fpTPA) optical nanoprinting technology based on few photon irradiation, successfully breaking through the bottleneck of traditional two-photon printing technology...

    03-06
    Voir la traduction
  • New insights into the interaction between femtosecond laser and living tissue

    The N-linear optical microscope has completely changed our ability to observe and understand complex biological processes. However, light can also harm organisms. However, little is known about the mechanisms behind the irreversible disturbances of strong light on cellular processes.To address this gap, the research teams of Hanieh Fattahi and Daniel Wehner from the Max Planck Institute for Photos...

    2024-06-07
    Voir la traduction
  • A Large Angle Color Holographic 3D Display System Based on Color LCD Grating

    Holographic display technology provides the ultimate solution for true 3D display, with enormous potential in augmented reality and virtual reality. However, the color and viewing angle of holographic 3D displays mainly depend on the wavelength of the laser and the pixel size of the current spatial light modulator. The inevitable color difference and narrow viewing angle in conventional systems se...

    2024-01-24
    Voir la traduction
  • The use of laser equipment to recover refractory materials can reduce 800,000 tons of carbon dioxide emissions

    Refractory material can withstand high temperature above 1500℃. They are essential materials for industrial furnaces that produce glass or ceramics, non-ferrous metals and steel. The service life of manufactured refractory products can range from a few days to many years, depending on the material, the temperature in the melting vessel and other operating parameters. As a result, although ...

    2023-09-04
    Voir la traduction