Français

Entangled photon pairs generated by quantum light sources can be used for quantum computing and cryptography

689
2024-03-30 13:47:51
Voir la traduction

A new device composed of semiconductor rings generates pairs of entangled photons, which can be used in photon quantum processors.


Quantum light sources generate entangled photon pairs, which can be used in quantum computing and cryptography. A new experiment has demonstrated a quantum light source made from semiconductor gallium nitride. This material provides a multifunctional platform for device manufacturing, previously used in on-chip lasers, detectors, and waveguides. Combined with these other optical components, new quantum light sources have opened up the potential to construct complex quantum circuits on a single chip.

Quantum optics is a rapidly developing field, where many experiments use photons to carry quantum information and perform quantum calculations. However, in order for optical systems to compete with other quantum information technologies, quantum optical devices need to be reduced from desktop size to microchip size. An important step in this transformation is the development of quantum light generation on semiconductor chips. Several research teams have accomplished this feat using materials such as aluminum gallium arsenide, indium phosphide, and silicon carbide. However, in addition to quantum light sources, fully integrated photonic circuits also require a series of components.

In order to ultimately establish such a complete circuit, Zhou Qiang and his colleagues from the University of Electronic Science and Technology of China turned their attention to gallium nitride. This material is renowned for its application in the first batch of blue LEDs, a development recognized by the 2014 Nobel Prize in Physics. Recent studies have shown that gallium nitride grown on sapphire can be used for many quantum optical functions, such as lasers, optical filtering, and single photon detection. "The gallium nitride platform provides broad prospects for advancing photonic quantum chips in the near future," Zhou said.

In order to manufacture gallium nitride quantum light sources, Zhou and his colleagues grew a layer of material thin film on a sapphire substrate, and then etched a diameter of 120 in the thin film μ The ring of m. In this structure, photons can propagate in a loop, similar to the way sound waves propagate on the curved walls of a whispering gallery. Next to the ring, researchers etched a waveguide for transmitting infrared laser. The coupling between two optical elements allows some laser photons to enter the ring from the waveguide.

In the experiment, the detector recorded the spectrum of the waveguide output light, revealing the discrete decrease of multiple wavelengths. These decreases correspond to resonance in the ring - when the wavelength of a specific photon fits an integer within the circumference of the ring. Resonant photons in waveguides can enter the ring and be trapped inside.

However, due to an effect called four wave mixing, resonant photon pairs entering the ring sometimes annihilate, causing a new pair of resonant photons to be generated and leave through the waveguide. It is expected that the two photons in each exit pair will be entangled with each other. To verify this entanglement, the research team measured the overlapping photons, indicating that they produce interference patterns - light and dark stripes - during imaging. In contrast, non entangled pairs produce a broad bright spot.

The interference level is a measure of the degree of photon entanglement. The degree of entanglement generated by gallium nitride rings is comparable to the level measured by other quantum light sources, Zhou said. "We demonstrate that gallium nitride is a good quantum material platform for photon quantum information, where the generation of quantum light is crucial," he said.

"In recent years, quantum optics has developed at an astonishing speed," said Thomas Walther, a quantum optics expert at the Technical University of Darmstadt in Germany. He said that moving forward will require small, sturdy, efficient, and relatively easy to manufacture components. Therefore, Zhou and his colleagues have demonstrated that gallium nitride is a promising material for manufacturing pump sources, quantum light sources, and single photon detectors. He said providing a platform for all these devices would be an important step forward, as it could reduce the cost of manufacturing such systems and make them more compact and robust than they are now.

Source: Laser Net

Recommandations associées
  • Microstructure evolution and mechanical properties of Ti-6Al-4V alloy prepared by dual ultrasonic vibration assisted directional energy deposition

    1. Research backgroundDirected energy deposition (DED), as an efficient and economical technology in the field of additive manufacturing (AM), is widely used in the manufacturing of metal materials. However, its high heating and cooling rates, as well as significant temperature gradients, often lead to rapid solidification, forming cross layer columnar grains and internal defects, seriously affect...

    03-21
    Voir la traduction
  • French researchers develop spiral lenses with optical vortex effects

    As humans stand at the forefront of a new era of space exploration, the National Laboratory of the International Space Station is taking the lead in carrying out a groundbreaking initiative that may completely change the way we understand and utilize space for research and development. In a recent development, Northrop Grumman's 20th commercial supply service mission has become an innovative light...

    2024-02-17
    Voir la traduction
  • 2026 SPIE Entrepreneurship Challenge Opens for Registration

    Applications are now open for the 2026 SPIE Startup Challenge. The annual entrepreneurial pitch competition is held by SPIE, the international society for optics and photonics, as part of SPIE Photonics West.In 2026, Photonics West will be held 17-22 January in San Francisco’s Moscone Center, with the SPIE Startup Challenge finals being held 20 January.The SPIE Startup Challenge is a competitive e...

    09-08
    Voir la traduction
  • Blue Laser Fusion plans to commercialize nuclear fusion reactors using laser technology by 2030

    Recently, a start-up company co founded by Nobel laureate Hideyoshi Nakamura in San Francisco plans to commercialize nuclear fusion reactors using laser technology around 2030.Hideyoshi Nakamura won the 2014 Nobel Prize in Physics for inventing blue light-emitting diodes. He founded Blue Laser Fusion in Palo Alto, California in November 2022. Partners include Hiroaki Ohta, former CEO of drone manu...

    2023-08-21
    Voir la traduction
  • Afinum Management acquires significant stakes in two laser companies

    Recently, Afinum Management, a private equity firm based in Munich, Germany, has acquired a large stake in two laser companies, with the intention of opening up new laser markets by combining the strengths of three parties.According to media reports, the two companies are ARC Laser in Germany and GNS neo Laser in Israel, and Afinum has agreed with the founders of the two companies that the acquisi...

    2024-08-08
    Voir la traduction