Français

Optical properties of Xinggory Cy3.5 amine/NH2 labeling experiment

406
2024-03-29 15:03:26
Voir la traduction

The optical properties of the Cy3.5 amine labeling experiment are an important reason for its application in biomarkers and fluorescence imaging. Cy3.5 is a fluorescent dye belonging to the Cyanine dye family, with high molar extinction coefficient and quantum yield, making it excellent in trace analysis and fluorescence imaging.

In the Cy3.5 amine labeling experiment, the dye covalently binds to specific functional groups on biomolecules (such as proteins, nucleic acids, etc.) through its amine group, thereby achieving the labeling of the target molecule. This labeling not only maintains the biological activity of the target molecule, but also endows it with fluorescence characteristics, making it convenient for qualitative and quantitative analysis in complex biological samples.

The maximum excitation wavelength of Cy3.5 dye is usually in the range of 550-570nm, while the maximum emission wavelength is in the range of 570-590nm. This gives Cy3.5 dye unique emission characteristics between green and red fluorescence, enabling good spectral separation from other commonly used fluorescent dyes such as GFP, FITC, etc., avoiding signal interference.

In addition to fluorescent signals with high sensitivity and specificity, Cy3.5 dyes also exhibit good photostability. Under continuous laser irradiation, its fluorescence signal can remain relatively stable and is not prone to bleaching or quenching. This makes Cy3.5 dye have better application prospects in long-term fluorescence imaging experiments.

In summary, the optical properties of the Cy3.5 amine labeling experiment make it a tool in the fields of biomarkers and fluorescence imaging. Its high sensitivity, specificity, good spectral separation, and excellent photostability make this dye valuable in biomedical research.

Source: Sohu

Recommandations associées
  • High Resolution Visible Light Imaging of Large Aperture Telescopes

    The deformable mirror used in adaptive optics can instantly correct the static wavefront aberrations and atmospheric turbulence wavefront disturbances of the optical system by changing its surface. This enables the optical system to automatically adapt to changes in the environment and maintain optimal performance. It is widely used in high-resolution astronomical observations, laser atmospheric t...

    2023-10-31
    Voir la traduction
  • Researchers are studying lasers for controlling magnetic ripple interactions

    One vision for computing the future is to use ripples in magnetic fields as the fundamental mechanism. In this application, magnetic oscillators can be comparable to electricity and serve as the foundation of electronic products.In traditional digital technology, this magnetic system is expected to be much faster than today's technology, from laptops and smartphones to telecommunications. In quant...

    2024-02-11
    Voir la traduction
  • Breakthrough! Extending the lifespan of solar panels to 50 years using lasers

    Recently, the National Renewable Energy Laboratory (NREL) under the US Department of Energy has made a revolutionary breakthrough by developing a concept validation method aimed at completely removing polymers from solar panel manufacturing, thereby achieving more efficient and environmentally friendly recycling.Solar panels have always been praised for their recyclability. However, the thin plast...

    2024-04-30
    Voir la traduction
  • STL's new 160 micron fiber optic can meet emerging network and pipeline capacity requirements

    STL unveiled its new 160 micron fiber optic for the first time at the 2023 India Mobile Conference Trade Show.The company claims that its 160 micron fiber optic was conceptualized and developed at its Center of Excellence in Maharashtra, India, and its cable capacity is three times that of traditional 250 micron fiber optic. STL Company.After the launch of 160 micron fiber at the 2023 India Mobile...

    2023-11-01
    Voir la traduction
  • Stratasys Ltd. receives a $120 million investment from Fortissimo Capital

    It is reported that Stratasys Ltd. (NASDAQ: SSYS) announced on February 2nd that it has received a $120 million investment from Fortissimo Capital, an Israeli private equity firm. This transaction directly purchases 11.65 million newly issued shares at a price of $10.30 per share, representing a premium of 10.6% compared to the company's closing price on January 31, 2025. As of press time, it has ...

    02-05
    Voir la traduction