Français

Luxiner launches LXR platform to set new standards for industrial laser microfabrication

174
2024-03-25 14:03:24
Voir la traduction

Luxiner, a globally renowned laser technology leader, proudly launches its latest innovative product, the groundbreaking LXR ultra short pulse laser platform. This cutting-edge technology represents a significant leap in industrial laser processing, providing unparalleled performance, versatility, and reliability.

In today's rapidly changing industrial environment, laser technology plays a crucial role in many fields, from microelectronics and semiconductors to automotive manufacturing and biomedical applications. Realizing the constantly evolving demand for higher precision, faster processing speeds, and more efficient material processing solutions, Luxiner has responded to the challenges by launching the LXR platform.

The LXR platform is designed specifically to meet the needs of modern industrial applications. Featuring a robust design with 24/7 operational readiness, reliable handling, and highly modular architecture that meets the needs of every customer; With its unique requirements, Luxiner's LXR platform has set a new benchmark for industrial USP lasers.

The LXR platform provides ultra short laser energy pulses to ensure high-quality material processing with minimal heat generation. This patented technology ensures precise ablation, minimal thermal damage, and excellent control of laser beam parameters, producing excellent results even in the most demanding applications.

The main functions of the LXR platform include: pulse energy up to 160 μ J: Ensure efficient and accurate material processing in various applications.
Power up to 160 W: promotes fast and efficient laser processing, improving productivity.
Beam quality M2<1.2: Provides excellent beam control, achieving excellent processing quality and accuracy.
Flexible pulse width: From a standard pulse width of 800fs to factory settings up to 12 ps, it can be optimized for different materials and applications.

Supports multiple wavelengths, including 1030 nm, 515 nm, and 343 nm, providing flexibility for various industrial applications.
Full digital control of pulse output: allows for precise customization of laser processing parameters to achieve the desired results.
Standard burst and fast burst modes: support optimization for deep carving, micro machining, surface texture, and more.
The blasting energy can reach up to 0.8 mJ, ensuring efficient and accurate material ablation even in demanding applications.

"We are pleased to bring the LXR platform to the market," said Antonio Raspa, Product Manager of Luxiner Solid State Laser. The unique feature of the LXR series platform lies in its unparalleled control and flexibility in laser pulse output. Its intuitive hardware and software interface enable seamless integration into the production line, simplifying the programming of operating parameters.

Luxiner has earned an excellent reputation in producing powerful and reliable laser sources, and the LXR platform continues this tradition. The LXR platform ensures optimal uptime and productivity, backed by Luxiner's excellent customer support and service.

The development of the LXR platform highlights Luxiner's commitment to innovation, industry collaboration, and deep understanding of customer needs. Luxiner's team of engineers and scientists worked tirelessly to bring this breakthrough technology to the market, setting clear industry standards for USP laser technology.

Source: Laser Net

Recommandations associées
  • Innovative laser based rain enhancement project launched by UAEREP and DERC teams

    Recently, the UAE Rainfall Enhancement Scientific Research Program launched a groundbreaking project with Dr. Guillaume Matras and his team from the Directional Energy Research Center of the Institute of Technology Innovation, aiming to address the challenge of global water shortage through advanced technology. This collaboration marks an important milestone in the field of rainfall enhancement sc...

    2024-03-02
    Voir la traduction
  • SuperLight Photonics receives strategic investment from Hamamatsu Ventures

    Recently, SuperLight Photonics, a leading laser technology manufacturer, announced that it has received strategic investment from global venture capital firm Hamamatsu Ventures, which will be used to promote long-term innovation and collaborative development of its laser technology. Hamamatsu Ventures focuses on investing in photonics companies that address future demand expectations, particular...

    2024-10-22
    Voir la traduction
  • Observation of laser power changes in ultrafast protein dynamics

    When researchers at the Max Planck Institute of Medicine conducted their first ultrafast X-ray crystallographic experiment on myoglobin in 2015, they were not aware that they had conducted the wrong experiment. By increasing the power of X-ray free electron lasers to ensure usable diffraction patterns, lead researcher Ilme Schlichting said that they "suddenly entered the wrong [excited] state with...

    2024-02-28
    Voir la traduction
  • The research team has developed a mechanical luminescent touch screen that can work underwater

    The optical properties of afterglow luminescent particles in mechanical luminescence and mechanical quenching have attracted much attention in various technological applications. A group of researchers from Pohang University of Science and Technology has attracted attention by developing an optical display technology with ALP that can write and erase messages underwater.The team is composed of Pro...

    2024-03-08
    Voir la traduction
  • The rare decay of the Higgs boson may point to physics beyond the standard model

    Particle physicists have detected for the first time a new decay of the Higgs boson, revealing subtle differences predicted by the standard model and potentially pointing to new physics beyond it. The research results are published in the journal Physical Review Letters.The theoretically predicted Higgs boson since the 1960s was finally discovered in the European CERN laboratory in 2012. As a quan...

    2024-01-26
    Voir la traduction