Français

Polarization of Laser Writing Waveguides Controlled by Liquid Crystal

828
2024-03-13 10:59:23
Voir la traduction

German researchers have developed a method for controlling and manipulating optical signals by embedding liquid crystal layers into waveguides created by direct laser writing. This work has produced devices capable of electro-optic control of polarization, which may open up possibilities for chip based devices and complex photonic circuits based on femtosecond write waveguides.

Researcher Alexandro Albertucci from Jena Friedrich Schiller University suggests that this progress may benefit other data intensive applications both inside and outside the data center.

Researchers combine two basic photon technologies by embedding a layer of liquid crystal inside the waveguide. When the light beam propagating inside the waveguide enters the liquid crystal layer, it will change the phase and polarization of the light when an electric field is applied. Then, the modified beam passes through the second part of the waveguide, propagating a beam with modulation characteristics. The fused silica waveguide comprises a tunable wave plate. Researchers demonstrated the complete modulation of light polarization at two visible light wavelengths using this system.

Alberucci said, "Our work paves the way for integrating new optical functions into the entire volume of a single glass chip, enabling compact 3D photonic integrated devices that were previously impossible to achieve. The unique 3D characteristics of femtosecond written waveguides can be used to create new spatial light modulators, where each pixel is individually addressed by a waveguide.".

Albertucci added that this technology can also be applied in the experimental implementation of dense optical neural networks.
Femtosecond lasers can be used to write waveguides deep into the material, rather than just writing waveguides on the surface like other methods, making it a promising method to maximize the number of waveguides on a single chip. This method involves focusing a strong laser beam inside a transparent material. When the optical intensity is high enough, the beam will change the material under illumination, resembling a pen with micrometer level accuracy.

"The most important drawback of using femtosecond laser writing technology to create waveguides is the difficulty in modulating the optical signals in these waveguides," said Alberucci. Due to the need for devices capable of controlling the transmission of signals in a complete communication network, our work explores new solutions to overcome this limitation.

Although the optical modulation of femtosecond laser writing into waveguides was previously achieved through local heating of waveguides, the use of liquid crystals, such as in recent works, can directly control polarization. Albertucci said that the benefits of this method include lower power consumption; Can independently handle individual waveguides in bulk; And reduce crosstalk between adjacent waveguides.

In addition, although the use of liquid crystals as modulators has become mature, this work helps to map the route for using liquid crystal properties as modulators in photonic devices embedded with waveguides throughout the entire volume, said Alberucci.

Researchers say that as this study is still a proof of concept, more work needs to be done before the technology is ready for practical application. For example, current devices modulate each waveguide in the same way. Therefore, the goal of the researchers is to achieve independent control of each waveguide.
This study was published in Optical Materials Express.

Source: Laser Net

Recommandations associées
  • Demonstrating broadband thermal imaging using superoptical technology in a new framework

    The research team used a new reverse design framework to demonstrate ultra optical broadband thermal imaging for applications ranging from consumer electronics to thermal sensing and night vision.The new framework, known as the "Modulation Transfer Function" project, solves the challenges related to broadband metaoptics by determining the functional relationship between image contrast and spatial ...

    2024-03-19
    Voir la traduction
  • The project cycle has been significantly shortened! Scientists use supercomputing to assist in laser fusion research

    Recently, the Laser Energy Laboratory (LLE) at the University of Rochester installed a new supercomputer to support its laser fusion experiments.The new supercomputer has increased the computing power of the laboratory by four times and shortened the time required to complete certain projects from 30 weeks to a few days.The Laser Energy Laboratory (LLE) at the University of Rochester is one of the...

    2023-10-26
    Voir la traduction
  • Mazak will push economical laser cutting processing equipment to Europe

    Recently, Yamazaki Mazak, a well-known Japanese machine tool manufacturer, announced that it will unveil its economic laser processing star Optiplex 3015 Ez for the first time in the European market at the upcoming 2024 EuroBLECH exhibition. This carefully crafted laser processing machine not only combines high-quality processing capabilities with affordable prices, but also aims to open the doo...

    2024-09-25
    Voir la traduction
  • BAE conducts laser pipeline scanning tests at the shipyard

    BAE Systems Australia has successfully conducted experiments at the Osborne Naval Shipyard and Henderson Shipyard, using laser scanning technology to create 3D models of pipelines that will be installed on the currently under construction Hunter class frigates.A one week trial was conducted at the Zero Line Future factory in southern Adelaide and BAE Systems Australia's Henderson Shipyard, demonst...

    2023-12-13
    Voir la traduction
  • Opton Laser commercializes ultra-high contrast third-order autocorrelators

    Recently, Opton Laser International, a supplier specializing in photonics, is currently distributing manufacturer UltraFast Innovations (UFI)'s ultra-high contrast third-order autocorrelator Tundra++. The new generation Tundra aims to characterize the temporal intensity distribution and quality of laser pulses with particularly high sensitivity.This is to avoid the harmful effects caused by the hi...

    2023-08-31
    Voir la traduction