Français

Professor Hu Yanlei from the University of Science and Technology of China, Nat Commun Preparation of Durable Janus Thin Films with Mode Switching by Femtosecond Laser

528
2024-02-22 14:05:35
Voir la traduction

Janus film is widely used in fields such as oil-water separation, water mist collection, and wearable patches due to its unique transmembrane directional water transport function. The function of traditional Janus thin films comes from the thickness direction of microchannels and single-sided chemical coating modifications (single-sided hydrophilic and hydrophobic modification of hydrophobic and hydrophilic substrates respectively). Water can be transported directionally from hydrophobic to hydrophilic surfaces through microchannels. However, during use, the chemical coating is prone to wear and tear, leading to functional failure. In non working conditions, microchannels are easily blocked by pollutants in the air, which greatly shortens the service life of Janus films. Faced with increasingly urgent practical application needs, the durability issue of Janus thin films urgently needs to be solved.

Professor Hu Yanlei from the School of Engineering Science at the University of Science and Technology of China and Associate Professor Zhang Yachao from Hefei University of Technology have innovatively considered the working mode and protection mode of Janus thin films separately. By stretching and releasing soft materials, they have achieved exposed and hidden protection of hydrophilic microporous groove channels, that is, switching between working and protection modes. When the Janus film encounters external mechanical friction or impact, the durability of the Janus film is improved by actively switching to the release protection mode. Based on the "mode switching" strategy, the team used femtosecond laser micro nano manufacturing method to prepare durable Janus thin films.

Research has found that the protective mode endows Janus film with mechanical durability, and it can still maintain the unidirectional transmission function of water droplets after 2000 friction cycles and 10 days of exposure to air (Figure 1). In addition, the protection mode can withstand harsh tests such as sandpaper friction, finger pressing, sand impact, tape peeling, and prevent pollutant particles from blocking channels (Figure 2). As a proof of concept, apply the mode switching durable Janus film to water mist collection in desert environments. For example, in the early morning when water mist is diffuse and there is no wind or sand, the Janus membrane is stretched to the working mode for water mist collection, and when a sandstorm occurs, it switches to a protective state to resist sand friction and impact. Taking the 30 minute water mist collection volume as an example, the results showed that the collection volume only decreased by 10% after rigorous testing, demonstrating the durable water mist collection ability of Janus film. In addition, long-term storage experiments were conducted on the protective mode Janus film under different temperatures, humidity, and chemical environments. The results showed that the water mist collection ability of the Janus film stored for 10 days was basically consistent with the original film, demonstrating the thermal stability, humidity stability, and chemical stability of the Janus film (Figure 3). The mode switching strategy proposed in this study has significant potential in promoting the practical application of Janus thin film functional devices in various fields such as multiphase separation purification, microfluidic control, and wearable health monitoring patches.

On February 16, 2024, the work was titled "Dual Janus membrane with on-demand mode switching fabricated by femtosecond laser" and published in Nature Communications.

Figure 1. Design and preparation of durable Janus film with "mode switching"


Figure 2. Mechanical durability test of Janus membrane under extreme conditions


Figure 3. Application of water mist collection based on durable Janus film



Source: Sohu

Recommandations associées
  • The Key Role of Laser Pointing Stability in the Application of Lithography Systems

    Lithography is one of the core processes in semiconductor manufacturing, and extreme ultraviolet lithography technology, as a new generation lithography technology, is also in a rapid development stage. The basic principle is to use photoresist (also known as photoresist) to form corrosion resistance due to photochemical reactions after being photosensitive, and to engrave the patterns on the mask...

    2024-07-02
    Voir la traduction
  • Stuttgart University researchers develop a new high-power 3D printed micro optical device for compact lasers

    Researchers from the Fourth Institute of Physics at the University of Stuttgart have demonstrated the feasibility of 3D printed polymer based micro optical devices in harsh laser environments.This study was detailed in the Journal of Optics, outlining the use of 3D printing technology to directly manufacture microscale optical devices on fibers, seamlessly integrating fibers and laser crystals int...

    2024-01-09
    Voir la traduction
  • Dublin City University has successfully tested the laser components of the next generation space navigation atomic clock

    The team collaborated with Eblana Photonics and Enlightra to showcase for the first time a new caliber laser, which will enable atomic clocks to be more efficient and compact for future satellite missions.This innovation addresses the key needs identified by the European Space Agency, which is the leading organization for the next generation of space navigation systems. This work was recently publ...

    2023-09-22
    Voir la traduction
  • Dyson V15 Detect: Saturn's low-cost laser cordless vacuum cleaner

    During Cyber Week, Saturn is now selling the Dyson V589 Detect Absolute with many accessories for only 15 euros. With this, retailers have once again achieved the most favorable price for the 2023 packaging of popular cordless vacuum cleaners - a cost-effective deal.After a brief break between Black Friday and Cyber Monday, the quote for Dyson V15 Detect Absolute is about to be updated. Taking a l...

    2023-11-29
    Voir la traduction
  • More evidence of cosmic gravitational wave background: Laser interferometer gravitational wave observatory composed of two detectors

    The gravitational wave background was first detected in 2016. This was announced after the release of the first dataset by the European pulsar timing array. The second set of data has just been released, combined with the timed array of Indian pulsars, and both studies have confirmed the existence of the background. The latest theory seems to suggest that we are seeing a comprehensive signal of th...

    2024-05-21
    Voir la traduction