Français

Researchers have placed photon filters and modulators on standard chips for the first time

742
2023-12-26 14:19:44
Voir la traduction

Researchers at the University of Sydney combined photon filters and modulators on a single chip, enabling them to accurately detect signals on the broadband RF spectrum. This work brings photonic chips closer to one day, potentially replacing larger and more complex electronic RF chips in fiber optic networks.

The Sydney team utilized stimulated Brillouin scattering technology, which involves converting electric fields in certain insulators into pressure waves. In 2011, researchers reported that Brillouin scattering has the potential for high-resolution filtering and developed new manufacturing techniques that combine sulfur based Brillouin waveguides on silicon chips. In 2023, they managed to combine photon filters and modulators on the same type of chip. The team reported in a paper published in Nature Communications on November 20th that this combination resulted in a spectral resolution of 37 megahertz for the experimental chip, with a wider bandwidth than previous chips.

"The integration of the modulator with this active waveguide is a key breakthrough here," said David Marpaung, a nanophotonics researcher at the University of Twente in the Netherlands. Marpaung collaborated with the Sydney team ten years ago and now leads his own research team, which is adopting different methods to seek broadband, high-resolution photon radio sensitivity in tiny packages. Marpaung said that when someone achieves spectral resolution below 10 MHz in the 100 GHz frequency band, they will be able to replace bulky electronic RF chips on the market. Another advantage of this chip is that it can convert RF signals into optical signals for direct transmission through fiber optic networks. The winner of this competition will be able to enter the huge market of telecommunications providers and defense manufacturers, who need radio receivers that can reliably navigate complex RF environments.

"Sulfide compounds have a very strong Brillouin effect; this is good, but there is still a question of whether this is scalable... It is still considered a laboratory material.", Marpaung said that the Sydney research team must find a new method to install chalcogenide waveguides in 5-squaremm packages into standard manufactured silicon chips, which is not an easy task. In 2017, the team came up with how to combine chalcogenides onto silicon input/output rings, but it was not until this year that anyone managed this combination using standard chips.

Other research groups are studying different materials that may provide similar performance. For example, lithium niobate has better modulator characteristics than silicon, and Marpaung's ongoing peer review work indicates that lithium niobate can provide similar high-resolution filtering through Brillouin scattering. Another group led by Peter Laki of Yale University demonstrated last year that pure silicon waveguides and chip combinations can achieve filtering at 2.7 MHz in the 6 GHz frequency band. This work does not integrate modulators, but it suggests a potentially simpler manufacturing path involving fewer materials.

That is to say, the Sydney team's method may require better acoustic performance than silicon. Researchers have known that the Brillouin effect has a history of over 100 years, but in recent decades it has aroused people's interest. In the past, researchers used it to store information in light pulses before retransmitting it, which was a technique to avoid converting light into electrical energy and returning it again.

Of course, the dream of integrating photonic chips has many moving parts. Researchers in Sydney wrote that modulators manufactured by others are rapidly improving, which will also benefit their technology. Other advancements in related technologies may benefit other teams dedicated to integrating photonic chips. "If you solve integration, performance, and practicality issues, you will gain market recognition," said Marpaung.

Source: Laser Net

Recommandations associées
  • Laser communication is expected to completely change optical links

    Laser technology is becoming a game changer in the field of satellite communication (SATCOM), capable of creating ultra secure networks that can transmit large amounts of data at unprecedented speeds through satellite networks and constellations.With continuous progress, the industry is ready for growth and collaboration, seizing the untapped potential of disconnected populations. The ability to h...

    2023-09-20
    Voir la traduction
  • Photon chips help drones fly unobstructed in weak signal areas

    With funding from the National Science Foundation of the United States, researchers at the University of Rochester are developing photonic chips that use quantum technology called "weak value amplification" to replace mechanical gyroscopes used in drones, enabling them to fly in areas where GPS signals are obstructed or unavailable.Using this quantum technology, scientists aim to provide the same ...

    2023-10-28
    Voir la traduction
  • NLIGHT releases new fiber laser products

    Recently, nLIGHT launched a new series of ProcessGUARD fiber lasers, which innovatively integrates process monitoring systems with fiber lasers and is committed to providing quality "protection" for applications such as cutting, welding, and additive manufacturing.New ConceptThe nLIGHT ProcessGUARD series fiber laser integrates a photodiode based plasma process monitoring system into the nLIGHT Co...

    2024-11-07
    Voir la traduction
  • IoTech shapes the flexible future of 3D printed electronic products

    The rapidly developing IoTech enterprise headquartered in Israel will showcase at LOPEC 2024 how its disruptive digital manufacturing continuous laser assisted deposition technology shapes the future of microelectronics and additive manufacturing.Herv é Javice, co-founder and CEO of ioTech, commented, "We are delighted to be attending the LOPEC exhibition for the first time and showcasing ...

    2024-02-27
    Voir la traduction
  • Topcon Announces the Launch of LN-50 3D Laser

    Earlier this month, before the annual Intergeo conference held in Germany, Topcon Positioning Systems announced the latest member of its robot total station series. This California based company launched the LN-50 3D laser in early October, marking their latest layout navigator, which has a range of 50 meters.They pointed out that this latest scanner is specifically designed for homebuilders, mech...

    2023-10-25
    Voir la traduction