Français

The new method can maintain beam quality while significantly improving the power of fiber lasers

388
2023-12-22 14:25:39
Voir la traduction

The new discovery by optical scientists has brought new vitality to fiber lasers. This innovative method significantly improves the power of lasers without reducing beam quality, and will become an important defense technology for future low-cost drones and remote sensing.

The research teams from the University of South Australia, the University of Adelaide, and Yale University have demonstrated new applications of multimode fibers, successfully increasing the power of fiber lasers by 3 to 9 times while maintaining beam quality, enabling them to focus on targets from a long distance.

This important research achievement was published in the journal Nature Communications, and the breakthrough stimulated Brillouin scattering (SBS) suppression and output focusing schematic diagram showcases its technical principles.

This innovative technology excites multiple modes in multimode fibers, significantly increasing the SBS threshold power. The core lies in generating diffraction limited light spots near the fiber output by modulating the relative phase of the fiber mode, and producing a focusing effect through lens collimation.

Researchers say that this new method will bring extremely high power output to fiber lasers, which will be widely used in fields such as defense industry, remote sensing applications, and gravitational wave detection, bringing unprecedented benefits for future development.

In response to the popularity of low-cost drones in modern battlefields, high-power fiber lasers are particularly important. It has the advantages of extremely low single launch cost and light speed operation, which can resist large-scale drone attacks, maintain the launch capability of military assets and vehicles, and ensure the execution of critical combat tasks.

This advanced technology not only has potential deterrent effects in the field of defense, but also aligns with the goals of defense strategic assessment and AUKUS Pillar 2.

Dr. Ori Henderson Sapir, a researcher at the Institute of Photonics and Advanced Sensing at the National University of Australia, stated that Australia has a long history of innovative fiber optic technology, which will put it in a world leading position in developing the next generation of high-power fiber lasers, not only limited to the defense field, but also contributing to new scientific discoveries.

Source: Laser Net

Recommandations associées
  • LPKF 2024 H1 revenue up 15% year-on-year

    Recently, LPKF Laser, a leading supplier of innovative laser solutions in Germany, released its performance report for the first half of the 2024 fiscal year as of June 30, demonstrating the company's steady performance and forward-looking layout in a complex market environment. According to the financial report, LPKF Laser&Electronics SE achieved significant growth in comprehensive revenue ...

    2024-07-31
    Voir la traduction
  • 2D photoelectric neuron array can achieve broadband and low loss optical nonlinearity accessible to ambient light

    Light can calculate functions during propagation and interaction with structured materials, with fast speed and low energy consumption. The use of all optical neural networks for general computing requires an optical activation layer with nonlinear dependence on the input. However, existing optical nonlinear materials either have slow speeds or very weak nonlinearity at the level of natural light ...

    2024-03-20
    Voir la traduction
  • Continuation of the Term of President and CEO of Jena Germany

    Recently, the supervisory board of Jenoptik, a leading German laser technology company, announced an important decision: to extend and confirm the term of Dr. Stefan Traeger as Chairman of the Executive Board, with a new term of three years starting from July 1, 2025, and the contract validity period correspondingly extended to June 30, 2028. Dr. Stefan Traeger has been serving as the President ...

    2024-09-06
    Voir la traduction
  • The research team from the School of Engineering at Columbia University in the United States has broken through the "bandwidth bottleneck" of high-performance computing in new photonic chips

    When running various artificial intelligence programs such as large language models, although data centers and high-performance computers are not limited by the computing power of their individual nodes, the amount of data transmitted between nodes is currently the root cause of the limitations on the performance and bandwidth transmission of these systems.Because some nodes in the system are more...

    2023-10-31
    Voir la traduction
  • Swedish KTH develops 3D printed quartz glass micro optical devices on optical fibers

    In what has been described as the "first communication", Swedish researchers conducted 3D printed quartz glass micro optical devices on the tip of optical fibers. They said that this progress could lead to faster Internet and better connectivity, as well as innovations such as smaller sensors and imaging systems.Scientists from the KTH Royal Institute of Technology in Stockholm have stated that co...

    2024-05-23
    Voir la traduction