Français

NASA's laser reflector instrument helps to accurately locate Earth measurements

439
2023-12-12 15:07:17
Voir la traduction

The most famous use of GPS satellites is to help people understand their location, whether it is driving cars, ships or planes, or hiking in remote areas. Another important but little-known use is to distribute information to other Earth observation satellites to help them accurately locate measurements of our planet.

NASA and several other federal agencies, including the US Space Force, the US Space Command, the US Navy Research Laboratory, and the National Geospatial Intelligence Agency, are improving the positioning accuracy of these measurements to the millimeter level through a new laser retroreflector array.

"The main benefit of laser ranging and LRA is improving the geographic location of all our Earth observations," said Stephen Merkowitz, project manager of NASA's Space Geodesy program at the Goddard Space Flight Center in Greenbelt, Maryland.

Earlier this year, a team of scientists and engineers from the project tested these arrays to ensure they were capable of carrying out missions and withstanding harsh space environments. Recently, the first batch of new laser reflector arrays were shipped to the US Space Force and Lockheed Martin in Littleton, Colorado to be added to the next generation of GPS satellites.

Laser reflector arrays make laser ranging possible - using small pulse lasers to detect the distance between objects. The laser pulse from the ground station is guided onto the orbiting satellite, which is then reflected from the array and returned to the space station. The time required for light to propagate from the ground to the satellite and then return can be used to calculate the distance between the satellite and the ground.

For decades, laser ranging and laser retroreflector arrays have been part of space missions, and they are currently installed on Earth observation satellites such as ICESat-2, SWOT, and GRACE-FO and are crucial for their operation. During the Apollo mission, LRA for laser ranging was even deployed on the surface of the moon.

"The Lord's Resistance Army is a special mirror," Mercowitz said. They are different from ordinary mirrors because they reflect light directly onto their original light source.

For laser ranging, scientists hope to guide the beam back to the original light source. They achieved this by placing three mirrors at right angles, essentially forming the inner corners of the cube. The laser reflector array consists of 48 mirror angle arrays.

"When light enters the array, due to these 90 degree angles, the light will reflect and produce a series of reflections, but the output angle will always be the same as the angle of entry," said Zach Denny, an optical engineer for the Goddard Space Geodetic Survey project.

Geodesy is the study of the shape of the Earth, its gravity and rotation, and how they change over time. The laser ranging to laser retroreflector array is a key technology in this study.

Due to the movement of tectonic plates, melting of ice layers, and other natural phenomena, the Earth's surface constantly undergoes minor changes. With these constant changes and the fact that the Earth is not a perfect sphere, there must be a method to define the measurements of the Earth's surface. Scientists refer to it as a reference frame.

These arrays and laser ranging not only help to accurately locate satellites in orbit, but also provide accurate positioning information for ground stations on Earth. With this information, scientists can even locate the center of Earth's mass, which is the origin or zero point of the reference frame.

Geodesy - laser ranging to reference satellites, such as LAGEOS - used to continuously determine the position of the Earth's center of mass, accurate to one millimeter. These measurement results are crucial for scientists to assign longitude and latitude to satellite measurements and place them on maps.

Major events such as tsunamis and earthquakes can cause minor changes in the Earth's center of mass. Scientists need precise laser ranging measurements to quantify and understand these changes, said Linda Thomas, a research engineer at the US Naval Research Laboratory in Washington.

Satellite measurements of subtle but important Earth phenomena rely on precise reference frames. The long-term trend of global sea level rise and its seasonal and regional variations occur at a rate of only a few millimeters per year. If scientists want to accurately measure a reference frame, the reference frame needs to be more accurate than these changes.

"Geodesy is a fundamental component of our daily lives because it tells us where we are and how the world is changing," said Frank Lemoyne, a project scientist for NASA's Space Geodesy program.

Source: Laser Net


Recommandations associées
  • Alcon acquires ophthalmic laser equipment company for $466 million

    On July 3rd local time, Swiss ophthalmic care giant Alcon announced the acquisition of Israeli medical technology company Belkin Vision and its laser equipment assets for treating glaucoma.The transaction includes a prepayment of $81 million, of which approximately $65 million is in cash. In addition, if Alcon can establish this technology as the preferred first-line treatment option for clinical ...

    2024-07-09
    Voir la traduction
  • The world's first tunable wavelength blue semiconductor laser

    Recently, researchers from Osaka University in Japan have developed the world's first compact, wavelength tunable blue semiconductor laser in a new study. This breakthrough paves the way for far ultraviolet light technology and brings enormous potential for applications such as virus inactivation and bacterial disinfection. The research results have been published in the journal Applied Physics Le...

    2024-11-23
    Voir la traduction
  • Scientists have developed the most powerful ultraviolet laser using LBO crystals

    It is reported that recently researchers from the Chinese Academy of Sciences have achieved the highest power output of 193 nm and 221 nm lasers using lithium borate (LBO) crystals. This achievement lays the foundation for the further application of the laser in deep ultraviolet (DUV) spectroscopy.The laser in DUV spectroscopy has many applications in science and technology, such as defect detecti...

    2024-04-07
    Voir la traduction
  • Scientists develop photo activated glass for clean energy production

    Japanese and Swiss scientists have collaborated to develop glass that can generate electricity under light, which may pave the way for sustainable energy production. Researchers from Tokyo Institute of Technology and the Swiss Federal Institute of Technology in Lausanne used femtosecond lasers to etch circuits on glass surfaces, resulting in the unexpected generation of semiconductor crystals.The ...

    2024-03-11
    Voir la traduction
  • Developing nanocavities for enhancing nanoscale lasers and LEDs

    As humanity enters a new era of computing, new small tools are needed to enhance the interaction between photons and electrons, and integrate electrical and photon functions at the nanoscale. Researchers have created a novel III-V semiconductor nanocavity that can limit light below the so-called diffraction limit, which is an important step towards achieving this goal.In the journal Optical Materi...

    2024-01-29
    Voir la traduction