Français

Researchers have reinvented laser free magnetic control

392
2023-11-09 15:04:20
Voir la traduction

In a significant advancement in material physics, researchers from Germany and the United States have theoretically demonstrated that only extremely thin materials need to be α- RuCl3 can be placed in an optical cavity to control its magnetic state.


This discovery may pave the way for new methods of controlling material properties without the use of strong lasers.

The Role of Optical Vacuum Waves
It is crucial that cavity vacuum fluctuations alone are sufficient to transform the magnetic order of the material from serrated antiferromagnetism to ferromagnetism. This discovery, published in npj Computational Materials, is part of a recent trend in material physics research, which involves using strong lasers to alter the properties of magnetic materials.

By carefully adjusting the characteristics of the laser, researchers can fundamentally change the conductivity and optical properties of different materials. However, this method requires continuous stimulation of high intensity laser and is related to some practical problems, mainly due to the difficulty in preventing the material from heating up.

A New Material Control Method
Therefore, researchers are looking for methods to use light to achieve similar material control, but do not use strong lasers. It is in this context that theorists from the Max Planck Institute for Material Structure and Dynamics in Hamburg, Stanford University, and the University of Pennsylvania, Germany, have proposed a fundamentally different approach to changing the magnetism of real materials in cavities - without the use of lasers.

Their cooperation indicates that just a cavity is enough to α- The serrated antiferromagnetism of RuCl3 is transformed into ferromagnetism. Crucially, the team demonstrated that even in seemingly dark cavities, α- RuCl3 can also detect changes in the electromagnetic environment and correspondingly change its magnetic state.

in summary
This effect is purely a quantum effect, because in quantum theory, a cavity is never truly empty. On the contrary, the fluctuation of the light field causes the appearance and disappearance of light particles, which in turn affects the performance of the material.

The optical cavity limits the electromagnetic field to a very small volume, thereby increasing the effective coupling between light and materials, "said lead author EmilVi ñ asBostr ö m, a postdoctoral researcher in the MPSD theoretical group." Our research results indicate that careful design of the vacuum fluctuations in the cavity's electric field can lead to significant changes in the material's magnetic properties.

Since light excitation is not required, this method in principle bypasses the issues related to continuous laser driving. This is the first work to demonstrate cavity controlled magnetism in real materials, following previous research on cavity control in ferroelectric and superconducting materials.

Researchers hope that designing specific cavities will help them achieve elusive new stages of matter and better understand the subtle interactions between light and matter.

By carefully adjusting the characteristics of the laser, researchers can fundamentally change the conductivity and optical properties of different materials.

What is the quantum effect in this situation?
This is because in quantum theory, cavities are never truly empty. The fluctuation of the light field causes the appearance and disappearance of light particles, which in turn affects the performance of the material.

Source: Laser Network


Recommandations associées
  • Micro optical technology based on metasurfaces has become a hot topic

    Introduction and application of a micro optical platform using metasurfacesMetasurfaces are artificial materials that excel in manipulating perception. Due to the fact that metasurfaces can reduce the size of lenses to one thousandth of traditional lenses, they have attracted great attention as optical components for miniaturization of next-generation virtual reality, augmented reality, and LiDAR ...

    2024-02-02
    Voir la traduction
  • The innovative application of carbon fiber laser cutting in the aircraft fuselage can significantly reduce the overall weight and reduce fuel consumption

    As one of the important means of transportation in modern society, the safety and performance of aircraft have always been the focus of attention. Behind the continuous pursuit of technological breakthroughs in the aviation industry, carbon fiber materials, as a lightweight and high-strength material, are gradually emerging in the application of aircraft fuselage.Combined with the application of ...

    2023-08-23
    Voir la traduction
  • French silicon optical company Scintil realizes the integration of III-VI DFB lasers and amplifiers with standard silicon optical technology

    Recently, French silicon photonics company Scintil Photonics announced an exciting collaboration, successfully integrating III-V-DFB lasers and amplifiers with standard silicon photonics technology in the production of Israeli semiconductor company Tower Semiconductor. This milestone collaboration marks a crucial step for Scintil in strengthening its supply chain, bringing new possibilities to com...

    2024-03-05
    Voir la traduction
  • Swiitol Launches E24 Pro: A Breakthrough in Laser Engraving Technology

    In order to completely change the world of laser engraving, Swiitol has launched the E24 Pro, a 24W integrated laser engraving machine with cutting-edge features and functions. The Swiitol E24 Pro showcases an innovative integrated structure laser engraving machine made of durable aluminum alloy. It is worth noting that the device can be used out of the box without installation, providing users wi...

    2023-11-23
    Voir la traduction
  • Latest breakthrough! 3500W free output blue semiconductor laser

    The 3500W free output blue semiconductor laser beam is output in a free space manner, with a rectangular spot directly acting on the material surface without the need for fiber optics or laser processing heads. This laser has a wavelength of 455 ± 10nm, with continuously adjustable power and a maximum output power of over 3500W. It is mainly used for non-ferrous metal cladding, quenching, etc., to...

    2024-09-03
    Voir la traduction