Français

NSF funding for collaboration between researchers from Syracuse University and Cosmic Explorer

157
2023-10-13 14:58:45
Voir la traduction

Billions of years ago, in a distant galaxy, two black holes collided, triggering one of the most extreme cosmic events in the universe. The power of this phenomenon is so great that it distorts the structure of spacetime, emitting ripples called gravitational waves.

These waves will eventually be detected on Earth by the Advanced Laser Interferometer Gravity Wave Observatory (LIGO) detector, and teachers from Syracuse University played a leading role in this major discovery. Although members of the university's gravitational wave group spent some time celebrating this incredible feat, they immediately began to think about how to build a new observatory that would enable them to explore more regions of the universe using gravitational waves.

The Space Explorer is the next generation gravitational wave observatory designed by the Center for Gravitational Wave Astronomy and Astrophysics (CGWAA) at Syracuse University. CGWAA was established this autumn as a center for university students and teachers, playing a major role in the design and operation of the Gravity Wave Observatory. The CGWAA team collaborated with scientists from Massachusetts Institute of Technology, Pennsylvania State University, California State University at Fullerton, and the University of Florida, hoping that the Space Explorer could begin exploring the universe in the mid-1930s.

In order to properly view the functionality of Cosmic Explorer, Advanced LIGO has detected approximately 100 black hole collisions since 2015, while Cosmic Explorer will be able to detect every collision in the visible universe - approximately 100000 times a year, or every five minutes. Space explorers will also see about one million neutron stars merging each year, enabling scientists to understand the properties of nuclear matter and the production of heavy elements.

Gravity wave detectors, such as the Space Explorer, are large interferometers. Interferometry is an extremely sensitive measurement technique that uses mirrors, laser beams, and interference (the addition or removal of combined beams) to measure the displacement of mirrors caused by gravitational wave patterns. Advanced detectors help researchers map black holes in the universe, which was previously impossible to achieve with telescopes because unlike stars, black holes do not produce light.

In October 2022, Cosmic Explorer project partners gathered at the Minnobrook Convention Center at Syracuse University to hold a proposal writing seminar, which received over $9 million in federal funding for the project. As part of the NSF commitment, Syracuse University will receive funding of $1.64 million over the next three years.

Recently, researchers from the School of Arts and Sciences who received funding for the Cosmic Explorer project include Stefan Ballmer, a professor of physics and founding director of CGWAA; Georgia Mansell, Assistant Professor of Physics; Craig Cahillane, Professor of Physics Research; Professor Josh Russell and Professor Christopher Scholz from the Department of Earth and Environmental Sciences, whose funding will involve the site evaluation of the proposed observatory.

Without the support of the National Science Foundation, this important task would not have been possible, "Ballmer said. When we established the Center for Gravitational Wave Astronomy and Astrophysics, our idea was to strengthen Syracuse University's position as a pioneer in the field of gravitational wave detection. The awards presented by NSF confirm this commitment and will make the center a key participant in promoting the success of the Space Explorer project.

Source: Laser Network

Recommandations associées
  • Lumentum Holdings changes CEO

    On February 3, 2025, Lumentum Holdings has appointed Michael Hurlston as its President, CEO, and Director, effective from February 7. Hurlston replaces Alan Lowe, who has been serving as the company's President and CEO since 2015. Lowe will continue to serve as a member of Lumentum's board of directors and as a consultant to the company.Lumentum is a major supplier of high-speed optical transceive...

    02-06
    Voir la traduction
  • On demand ultra short laser flash: controllable optical pulse pairs from a single fiber laser

    Set up a dual comb fiber laser oscillator, external pulse combination, and real-time detection.In innovative methods for controlling ultra short laser flashes, researchers from Bayreuth University and Konstanz University are using soliton physics and two pulse combs in a single laser. This method has the potential to greatly accelerate and simplify laser applications.Traditionally, the pulse inter...

    2024-01-12
    Voir la traduction
  • Processing application of ultrafast laser on bulk metallic glass

    Recently, an international research team led by Professor Zhang Peilei from the School of Materials Science and Engineering at Shanghai University of Engineering and Technology published a review paper titled "Research status of femtosecond lasers and nanosecond lasers processing on bulk metallic glasses (BMGs)" in the renowned journal Optics&Laser Technology in the field of optics and lasers....

    2023-09-18
    Voir la traduction
  • Novanta launches multi axis laser scanning head for microprocessing applications

    Novanta Corporation ("Novanta") announced the launch of the new generation of multi axis scanning head, the Precession Elephant III.This next-generation multi axis scanning head for microfabrication provides a simple upgrade path for existing and new customers to meet the growing market demand with faster and more accurate performance.The Precision Elephant III (PE III) utilizes proprietary optica...

    2024-07-18
    Voir la traduction
  • Composite two-dimensional materials for fiber lasers demonstrate the prospects of ultra fast optical applications

    The formation of dissipative solitons is influenced by various factors, such as spectral filtering effect and Kerr nonlinearity effect. This interaction leads to the possibility of mode locking on a large range of parameters, generating pulses with completely different types and evolution from conventional physical laws and optical properties, tolerating higher nonlinear effects, and effectively a...

    2023-09-21
    Voir la traduction