Français

Shanghai Optical and Mechanical Institute has made progress in ultra-low threshold Rydberg state single mode polariton lasers based on symmetric engineering

785
2023-10-12 14:42:45
Voir la traduction

Recently, the research team of Dong Hongxing and Zhang Long from the Research Center of Infrared Optical Materials of the Chinese Academy of Sciences Shanghai Institute of Optics and Precision Mechanics, in cooperation with Huazhong University of Science and Technology, reported a new mechanism for generating dynamically tunable single-mode lasers from exciton polaritons with ultra-low thresholds, The relevant research results are published in Nano Letters under the title "Rydberg State Single Mode Polarion Lasing with Ultralow Threshold via Symmetry Engineering".

The implementation of single mode nano lasers with high energy efficiency and tunable bandwidth is crucial for numerous technological applications such as all optical information processing, optical encryption, super-resolution biomedical imaging, and miniaturized intelligent display. The current strategies for obtaining single-mode lasers still have limitations.

In addition, the current control methods for emission wavelength are essentially static, and new mechanisms that can generate dynamically tunable single-mode lasers are urgently needed to be explored. Exciton polarized polaritons have both photon and exciton properties and have received widespread attention in recent years. Compared with traditional lasers, polarized polariton lasers do not require population inversion and can achieve mode tuning through quantized exciton polarized polariton states, making them an ideal platform for studying dynamically tuned ultra-low threshold lasers.

Researchers have reported the implementation of tunable single mode polarized polariton lasers from highly excited Rydberg states through symmetry engineering. By breaking the symmetry of polariton wave functions through potential traps and controlling the spatial overlap between gain regions and intrinsic modes, reversible and dynamic single mode polariton lasers can be generated from quantized polariton states. By increasing the asymmetry of the potential well, single mode lasers can be achieved even in highly excited states with a main quantum number of N=14.

In addition, due to the excellent overlap of reservoir intrinsic modes and effective spatial constraints, the laser threshold can be reduced by 6 orders of magnitude compared to traditional lasers. The mechanism elucidated by the research results does not depend on any specific material and is applicable to various polarization polariton systems, opening up a new path for the development of dynamically tunable threshold free polarization polariton lasers.

This work has been supported by projects such as the National Natural Science Foundation of China and the Shanghai Youth Top Talent Program.

Figure 1 (a) Schematic diagram of quantized polarized polariton states in a symmetric well; (b) The simulated PL spectrum corresponds to the experimental configuration shown in a; (c) Quantized polarized polariton states in asymmetric wells; (d) The simulated PL spectrum corresponds to the experimental configuration shown in c; (e) SEM images of typical ZnO microrods; (f) 1.27 radius μ Angle resolved PL images of typical ZnO microrods with m. (g) Spatial resolved PL images of polaritons confined in traps.

Figure 2 (a-d) shows the pump position dependence of spatially resolved PL images in a symmetric well. Given in each image Δ X represents the displacement of the excited laser spot from the center of the trap; (e) The spectra corresponding to the images shown in a-d; The pump position dependence of spatially resolved PL images in asymmetric wells (f-i). Δ X represents the displacement between the pumping laser spot and the opposite end face of the ground state polarization wavelet function. Pumping power: 1.25 Pth; (j) The spectra corresponding to the images shown in f-1.

Figure 3 (a-d) selectively pumped spatially resolved PL images of highly asymmetric wells at N=2, 3, 7, and 14 excited states, with a pumping power of 1.35 Pth; (e) The spatially resolved PL images of highly asymmetric wells were selectively pumped at N=2, 3, 7, and 14 excited states, with a pumping power of 1.35 Pth.

Source: OFweek

Recommandations associées
  • Research has shown that patterns on crystals can double the optical sensitivity of photodetectors

    Scientists from the Institute of Automation and Control Process at the Far East Branch of the Russian Academy of Sciences described the changes on the surface of monocrystalline silicon during laser processing. The author of this study placed the crystal in a methanol solution and applied a laser pulse lasting one thousandth of a second to the sample, with a pulse count ranging from five to fifty ...

    2024-04-01
    Voir la traduction
  • In the development of modern electronic welding technology, the application advantages of laser soldering process

    With the rapid development of modern electronic information technology, integrated circuit chip packaging forms are also emerging in an endless stream, and the package density is getting higher and higher, which greatly promotes the development of electronic products to multi-function, high performance, high reliability and low cost.So far, through hole technology (THT) and surface mount technolog...

    2023-09-13
    Voir la traduction
  • BluGlass successfully raised $5.87 million to accelerate GaN laser production and delivery

    Recently, BluGlass, a leading global semiconductor development company, successfully completed its stock purchase plan (SPP) and raised $5.87 million in funds (excluding costs). This SPP provides eligible shareholders with the opportunity to subscribe to up to $100000 in new shares of BluGlass at a discounted price of $0.037 per share, along with free additional options. This initiative has gained...

    2024-04-12
    Voir la traduction
  • Chinese University of Science and Technology Reveals a New Physical Mechanism of Photoinduced Particle Rotation

    Light has angular momentum properties. Circularly polarized or elliptically polarized beams carry spin angular momentum (SAM), while beams with helical phase wavefronts carry orbital angular momentum (OAM). During the interaction between light and particles, the transfer of angular momentum can generate optical torque, driving particles to rotate. Among them, the transfer of optical spin angular m...

    2024-06-25
    Voir la traduction
  • Probe organization of photoacoustic devices using low-cost laser diodes

    Photoacoustic technology provides a non-invasive method for detecting biological tissues, but its clinical application is limited, partly due to the large volume and high cost of laser sources. A compact PA sensing instrument powered by laser diodes for biomedical tissue diagnosis can provide clinical doctors with a practical and effective tool for evaluating breast diseases.By providing a cost-ef...

    2024-03-06
    Voir la traduction