Français

A research team at City University of Hong Kong has developed a multispectral, ultra-low dose photoacoustic microscope system

820
2023-09-21 15:09:39
Voir la traduction

Optical resolution "photoacoustic microscope is a new biomedical imaging technology, which can be used in the research of cancer, diabetes, stroke and other diseases. However, insufficient sensitivity has always been a long-term obstacle to its wider application.

According to Maims Consulting, a research team from City University of Hong Kong (CityU) has recently developed a multispectral, ultra-low dose photoacoustic microscope (SLD-PAM) system, which has significantly improved its sensitivity limit, providing the possibility for future new biomedical applications and clinical conversion, The relevant research results are published in the Advanced Science journal under the title of "Super Low Dose Functional and Molecular Photoacoustic Microscope".

Photoacoustic microscopy combines ultrasonic detection and laser induced photoacoustic signals to create detailed images of biological tissues. When biological tissue is irradiated by pulsed laser, ultrasound is generated, which is then detected and converted into electrical signals for imaging. Compared with traditional optical microscopy methods, this novel technique can achieve capillary level or subcellular level resolution at a greater depth. However, insufficient sensitivity hinders the wider application of this technology.

High sensitivity is important for high-quality imaging. It helps detect chromophores that do not strongly absorb light (molecules that give material color by absorbing visible light at specific wavelengths). It also helps to reduce photobleaching and phototoxicity, reduce interference with fragile organ biological tissues, and provide more optional low-cost, low-power lasers over a wide spectral range Professor Wang Lidai from the Department of Biomedical Engineering at City University of Hong Kong explained.

For example, in ophthalmic examinations, low-power lasers are preferred for greater safety and comfort. He added that long-term monitoring of pharmacokinetics or blood flow requires low-dose imaging to reduce interference with tissue function.

In order to overcome the sensitivity challenge, Professor Wang Lidai and his research team recently developed a multispectral, ultra-low dose photoacoustic microscope system, breaking the sensitivity limit of traditional photoacoustic microscopes and significantly increasing the sensitivity by about 33 times.

They achieved this breakthrough through improvements in the design of photoacoustic sensors, combined with the 4D spectral spatial filter algorithm used for computation. Researchers have improved the design of photoacoustic sensors by using laboratory customized high numerical aperture acoustic lenses, optimizing optical and acoustic beam combiners, and improving optical and acoustic alignment. The photoacoustic microscope system also utilizes low-cost multi wavelength pulse lasers to provide 11 wavelengths from green to red light. Its laser operates at a repetition rate of up to megahertz, with a spectral switching time of sub microseconds.

In order to demonstrate the importance and novelty of the photoacoustic microscope system, the research team conducted comprehensive systematic testing on it through ultra-low pulse in vivo animal imaging using green and red light sources, and achieved significant results.

Firstly, the photoacoustic microscope system can achieve high-quality in vivo anatomy and functional imaging. The ultra-low laser power and high sensitivity significantly reduce interference in eye and brain imaging, paving the way for clinical conversion. Secondly, without affecting image quality, the lower laser power of this photoacoustic microscope system reduces photobleaching by about 85% and enables the use of a wider range of molecules and nanoprobes. In addition, the system significantly reduces costs, making research laboratories and clinics more affordable.

Professor Wang Lidai said, "This photoacoustic microscope system can perform non-invasive imaging of biological tissues with minimal damage to subjects, providing a powerful and promising tool for anatomical, functional, and molecular imaging. We believe that this photoacoustic microscope system will help advance the application of photoacoustic imaging, achieve many new biomedical applications, and pave the way for clinical transformation.

Next, Professor Wang Lidai and his research team will use the system to test a wider range of small molecule and gene encoded biomarkers in biological imaging. They also plan to experiment with more types of low-power light sources in a wide spectrum to develop wearable or portable photoacoustic imaging microscopes.

Source: Sohu


Recommandations associées
  • Snapmaker Announces Its First Dedicated Laser Cutter, the Ray, in 20w and 40w Flavors

    Snapmaker has been making three-in-one manufacturing tools -- The Snapmaker, Snapmaker 2 and Artisan -- for over six years now. These machines have changeable tool heads that can be used for 3D printing, laser cutting and CNC machining. At the beginning of this year, it branched out to make adedicated 3D printer, the J1-- a dual print-head machine that works very well -- and today the ...

    2023-08-28
    Voir la traduction
  • Breakthrough in optical quantum simulation using long-lived polariton droplets

    Abstract: A groundbreaking discovery by CNR Nanotec and scientists from the University of Warsaw has revealed a robust method for creating long-lived quantum fluids using semiconductor photonic gratings. This study, published in the journal Nature Physics, marks a significant step forward in simulating complex systems through unique polariton droplets that demonstrate stability in lifespan and rec...

    2024-03-27
    Voir la traduction
  • Scientists demonstrate effective fusion "spark plugs" in groundbreaking experiments

    Researchers from the Laser Energy Laboratory at the University of Rochester led the experiment and demonstrated an efficient "spark plug" for direct driving of inertial confinement fusion. In two studies published in the journal Nature Physics, the team shared their findings and detailed the potential to expand these methods with the aim of successful nuclear fusion in future facilities.LLE is the...

    2024-03-04
    Voir la traduction
  • GeoCue introduces three new TrueView 3D imaging systems

    Earlier this month, GeoCue, a liDAR mapping hardware and software provider, announced the launch of three new products for its TrueView 3D imaging system. These new systems combine laser scanning and high-resolution imaging, including the TV625, TV680 and TV680LR. All three systems are NDAA-compliant.All three systems are designed to be used in conjunction with drones, and the company note...

    2023-08-04
    Voir la traduction
  • Tongkuai and KDPOF launch their first 980 nm multi gigabit automotive interconnection system

    Tongkuai Optoelectronic Devices, a global leader in vertical cavity laser emitters (VCSEL) and laser diodes (PD) solutions based in Germany, and a Spanish expert in high-speed optical network solutions, KDPOF, showcased the first 980 nm multi gigabit interconnect system for automotive systems at last week's ECOC.Both companies are committed to achieving the most advanced optical data communication...

    2023-10-17
    Voir la traduction