Français

Laser communication is expected to completely change optical links

256
2023-09-20 15:07:39
Voir la traduction

Laser technology is becoming a game changer in the field of satellite communication (SATCOM), capable of creating ultra secure networks that can transmit large amounts of data at unprecedented speeds through satellite networks and constellations.

With continuous progress, the industry is ready for growth and collaboration, seizing the untapped potential of disconnected populations. The ability to handle the surge in data volume is a key advantage provided by laser communication, providing an important value proposition.

Despite the challenges, laser communication has broad prospects in defense and space applications, as US government agencies continue to embrace the prospects of laser communication and invest in further development to enhance its use.

Communication has many advantages: precise and targeted beams, less interference, and significant bandwidth. He is also optimistic about the prospects of laser communication.

The prospects for satellite communication and laser communication are very bright, "Huttenhoff said. In the future, secure inter satellite links and air to ground communication will utilize this technology. Although spectrum management is still required with the surge of this capability, this management should be much easier due to the narrow beam.

Widely used, such as inter satellite communication and satellite to ground connectivity. With the continuous growth of the number of orbiting satellites, space-based laser communication is becoming an important participant in satellite communication systems.

The Revolution of Satellite Communication
A study conducted by the Maharashtra Strait Research Center in India shows that the global space-based laser communication market (mainly used for commercial applications) is worth approximately $1.13 billion by 2022 and is expected to quadruple by 2031, with an annual growth rate of nearly 26%. It is titled "The Space-based Laser Communication Market".

Space-based laser communication has become a breakthrough solution for data transmission in remote and challenging locations. This technology provides a wide range of applications, such as inter satellite communication and satellite to ground connectivity. With the continuous growth of the number of orbiting satellites, space-based laser communication is becoming an important participant in satellite communication systems.

Although investors are cautious, they are closely monitoring the progress of the industry to compete with major commercial operators such as Starlink and OneWeb. The extensive customer base waiting for connections provides profitable opportunities for growth and collaboration. With laser communication providing faster speed, higher security, and higher efficiency, it is expected to reshape the landscape of satellite communication.

Laser communication will redefine secure and efficient data transmission not only in the commercial market, but also in the defense and government markets. Through technological progress, continuously improving affordability, and rapidly expanding customer base, laser technology is heralding a new era of satellite communication. As researchers continue to improve the efficiency, power output, and wavelength stability of laser diodes, the performance and reliability of laser communication systems will reach new heights.

In the international community, standardization work led by organizations such as the International Telecommunication Union (ITU) and other industry alliances is also underway. The establishment of universal standards ensures the interoperability and widespread adoption of laser communication systems. This enables seamless integration with existing RF infrastructure, creating hybrid systems that provide enhanced reliability and performance.

Although atmospheric challenges affect laser communication, innovative technologies such as adaptive optics, beam control, and error correction algorithms are still being explored to mitigate these impacts. Overcoming these obstacles is crucial for the practical implementation of laser communication.

It can be said that laser technology is completely transforming the satellite communication industry. With its unparalleled functionality, laser communication provides faster speed, enhanced security, and higher efficiency than today. As the industry continues to mature, cooperation and partnerships will help drive innovation and shape the future of satellite communication.

Tim Dare is an outstanding engineer and technical director at Booz Allen Hamilton, a technology research company located in McLean, Virginia. Dare stated that the prospects for laser optical communication are bright.

A Bright Future
Those who promote this technology are focused on utilizing the advantages of laser optical communication over radio frequency communication, such as increased bandwidth, small beam size, difficulty in interception/detection or interference, and the ability to utilize largely unregulated portions of the spectrum, "Dare said. These advantages provide prospects for laser communication. According to multiple market analysis studies, the laser communication market is expected to grow from hundreds of millions of dollars to billions of dollars by 2030.

The typical use of laser communication is in space. Traditionally, laser communication has been developed and used for space-based applications, such as satellite to satellite and ground to satellite data transmission, due to the impact of the atmosphere on laser communication in land, ocean, and air domains, including bandwidth, pointing, capture, and tracking, as well as communication resilience under various atmospheric conditions, "Dare continued.

Dare said, "Technology developers are now focusing their investments on improving the practical applications of laser communication in areas such as bandwidth, distance, and resilience under various atmospheric conditions." Currently, the bandwidth is nominally 1 to 10 gigabits per second, and in the future it will reach hundreds of gigabits per second. For ground to ground applications, the current distance is approximately 1 kilometer to tens of kilometers, and it will exceed 50 kilometers in the future.

Kevin Huttenhoff is the Senior Manager of Space Data Transmission in the Lockheed Martin Space Systems Department in Denver. He also emphasized that laser communication has many advantages: precise and targeted beams, less interference, and significant bandwidth. He is also optimistic about the prospects of laser communication.

The prospects for satellite communication and laser communication are very bright, "Huttenhoff said. Future secure inter satellite links and air to ground communication will utilize this technology. Although spectrum management is still required with the surge in this capability, due to the narrow beam, this management should be much easier.

Source: Laser Network


Recommandations associées
  • TRUMPF high-power laser dynamic beam shaping technology creates opportunities for the electric vehicle industry

    It is reported that researchers from TRUMPF in Germany reported research on using dynamic beam shaping of high-power lasers to improve the productivity of hairpin stators, creating opportunities for the electric vehicle industry. Relevant research was published in "PhotonicsViews" under the title "Unlocking opportunities for the EV industry with beam shaping of high-power lasers".The electric vehi...

    2024-07-01
    Voir la traduction
  • Lithuanian and Japanese researchers develop silver nanolaser

    Recently, researchers from Kaunas University of Technology (KTU) in Lithuania and the Tsukuba National Institute of Materials Science in Ibaraki, Japan, have collaborated to successfully develop a new type of nanolaser based on silver nanocubes.Although its structure is small and can only be observed through high-power microscopes, its potential application prospects are broad, and the research te...

    2024-12-24
    Voir la traduction
  • The birth of multi photon 3D laser printing technology: printing millions of particles within 1 second

    Multi photon 3D laser printing technology, as a disruptive micro manufacturing technology, is facing two major challenges: speed and material compatibility. However, the latest research has made breakthrough progress, successfully increasing printing speed tenfold while maintaining excellent detail accuracy.In this remarkable study, scientists abandoned the traditional single beam printing method ...

    2024-04-19
    Voir la traduction
  • In depth understanding of the formation of condensation rings in laser spot welding - machine learning and molecular dynamics simulation

    Researchers from the Pacific Northwest National Laboratory and Johns Hopkins University have reported that machine learning and molecular dynamics simulations can help to gain a deeper understanding of the formation of condensation rings in laser spot welding. The related paper titled 'Machine learning and molecular dynamics simulations aided insights into conditioned ring formation in laser spot ...

    2024-12-21
    Voir la traduction
  • Scientists use glass to create femtosecond lasers

    Image source: Federal Institute of Technology in Lausanne, SwitzerlandScience and Technology Daily, Beijing, September 27th (Reporter Zhang Jiaxin) Commercial femtosecond lasers are manufactured by placing optical components and their mounting bases on a substrate, which requires strict alignment of optical components. So, is it possible to manufacture femtosecond lasers entirely from glas...

    2023-09-28
    Voir la traduction