Français

New research on achieving femtosecond laser machining of multi joint micromachines

202
2023-09-15 14:06:09
Voir la traduction

The team of Wu Dong, professor of the Micro/Nano Engineering Laboratory of University of Science and Technology of China, proposed a processing strategy of femtosecond laser two in one writing into multiple materials, manufactured a micromechanical joint composed of temperature sensitive hydrogel and metal nanoparticles, and then developed a multi joint humanoid micromachine with multiple deformation modes (>10). The relevant research results were recently published in Nature Communications.

In recent years, femtosecond laser two-photon polymerization technology has been widely used as a true three-dimensional machining method with nano precision to manufacture various functional microstructures. These microstructures exhibit broad application prospects in fields such as micro nano optics, micro sensors, and micro machine systems. However, it is still highly challenging to utilize femtosecond lasers to achieve composite multi material processing and further construct multimodal micro/nano machinery.

Femtosecond laser two in one processing strategy includes the use of asymmetric two-photon polymerization to build hydrogel joints, and laser reduction deposition of silver nanoparticles in the local area of the joint. Among them, the asymmetric photopolymerization technology makes the cross-linking density of the local area of the hydrogel micro joint produce anisotropy, and finally enables it to realize the bending deformation with controllable direction and angle.

In situ laser reduction deposition can accurately process silver nanoparticles on hydrogel joints. These silver nanoparticles have a strong photothermal conversion effect, which enables the mode switching of multi joint micromachines to exhibit excellent characteristics such as ultra-short response time (30 milliseconds) and ultra-low driving power (<10 milliwatts).

As a typical example, 8 micro joints are integrated into a humanoid micromachine. Subsequently, researchers utilized spatial light modulation technology to achieve multifocal beams in 3D space, thereby accurately stimulating each micro joint. The collaborative deformation between multiple joints promotes the completion of multiple reconfigurable deformation modes in humanoid micro robotic arms. Finally, at the micrometer scale, humanoid micromachines "danced".

In concept validation, by designing the distribution and deformation direction of micro joints, a dual joint micro robotic arm can collect multiple micro particles in the same and opposite directions. In summary, the femtosecond laser two in one machining strategy can construct deformable micro joints in various local areas of three-dimensional microstructures, achieving various reconfigurable deformation modes.
Researchers have introduced that micro robotic arms with multiple deformation modes will exhibit broad application prospects in micro cargo collection, microfluidic manipulation, and cell manipulation.

Source: Micro and Nano Engineering Laboratory, University of Science and Technology of China

Recommandations associées
  • The official launch of FV4000 and FV4000MPE microscopes aims to redefine scientific imaging

    Introduction to FLUOVIEW ™ The FV4000 confocal laser scanning microscope and FV4000MPE multiphoton laser scanning microscope have made breakthroughs in imaging technology, enabling researchers to make new scientific discoveries. The FV4000 and FV4000MPE microscopes aim to redefine scientific imaging, providing higher accuracy, lower noise, and higher sensitivity, setting new standards for im...

    2023-11-03
    Voir la traduction
  • Progress in the research and development of high-performance electrically pumped topology lasers in semiconductor manufacturing

    Topological laser (TL) is an ideal light source for future new optoelectronic integrated chips, designed and manufactured using topological optics principles to obtain robust single-mode lasers. Electrically pumped topology lasers have become a research hotspot due to their small size and ease of integration, but topology lasers based on electrical injection are still in the early stages of resear...

    2024-07-11
    Voir la traduction
  • Scientists develop photo activated glass for clean energy production

    Japanese and Swiss scientists have collaborated to develop glass that can generate electricity under light, which may pave the way for sustainable energy production. Researchers from Tokyo Institute of Technology and the Swiss Federal Institute of Technology in Lausanne used femtosecond lasers to etch circuits on glass surfaces, resulting in the unexpected generation of semiconductor crystals.The ...

    2024-03-11
    Voir la traduction
  • Developing a concentration independent pressure sensing method for high-temperature combustion diagnosis

    Recently, a research group led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences developed a concentration independent pressure sensing method based on two-color laser absorption spectrum for high-temperature combustion diagnosis.The research findings are published in Optics Letters.Aircraft engines are developing towards high-t...

    2024-03-08
    Voir la traduction
  • Romania Center launches the world's most powerful laser

    Are you ready? The signal is out! "In the control room of a research center in Romania, engineer Antonio Toma has activated the world's most powerful laser, which is expected to make revolutionary progress in various fields from the health sector to space. The laser located in the center near the Romanian capital Bucharest is operated by the French company Thales and utilizes the invention of Nobe...

    2024-04-01
    Voir la traduction