Français

NICT Japan corrects sudden data errors caused by atmospheric turbulence in laser links

490
2025-10-25 10:35:45
Voir la traduction

The National Institute of Information and Communication Technology of Japan, Nagoya Institute of Technology, and Japan Aerospace Exploration Agency have achieved the so-called "world's first successful demonstration of next-generation error correction codes, reducing the impact of atmospheric turbulence on ground to satellite laser communication".

Atmospheric turbulence in ground-to-satellite laser links is known to cause fading, resulting in burst data errors. Error correction codes are one of the key technologies to mitigate such effects.

The Japan-based group stated, “In this experiment, we transmitted next-generation error correction codes with high correction capability (5G NR LDPC and DVB-S2) and successfully corrected burst data errors caused by atmospheric turbulence in the laser link.

“This result, confirming that both codes can significantly improve communication quality compared to conventional schemes, is expected to contribute to the practical implementation of ground-to-satellite laser communications by applying these codes.”

 



JAXA’s Laser Utilizing Communication System (LUCAS)


NICT has been conducting research and development to implement practical ground-to-satellite laser communications. The institute says it recognizes overcoming atmospheric turbulence as “one of technical challenges for the practical implementation”. To address this challenge, NICT has carried out ground-to-geostationary (GEO) satellite laser communication experiments using NICT’s 1-meter optical ground station and JAXA’s Laser Utilizing Communication System (LUCAS) onboard the optical data relay satellite, in order to investigate the impact of atmospheric turbulence on communication quality.

This investigation revealed that atmospheric turbulence causes fading lasting from several milliseconds to several tens of milliseconds, which generates burst data errors. These errors lead to degraded and unstable communication quality. Currently, two approaches are available to overcome these effects: optical compensation schemes and error correction codes. Focusing on the advantage of eliminating control systems of optics, NICT adopted error correction codes.

Error correction by next-gen codes
NICT has been working on a plan to demonstrate error correction using next-generation codes with higher correction capability than conventional Reed-Solomon codes, including 5G NR LDPC for 5G applications and DVB-S2 for satellite broadcasting. In this experiment, NICT, in collaboration with NITech, conducted data transmission with next-generation error correction codes, including 5G NR LDPC and DVB-S2, using a 60 Mbps downlink on the ground-to-GEO satellite laser communication link between NICT’s 1-meter optical ground station and LUCAS.

Utilizing NICT’s experiences acquiring atmospheric turbulence, the parameters involved with interleaving method and error correction code were optimized to address burst errors caused by fading.

Analyzing this experimental data successfully demonstrated the correction of burst data errors caused by atmospheric turbulence-induced fading, marking that the world’s first confirmation that 5G NR LDPC and DVB-S2 can significantly improve communication quality compared to conventional codes.

These advanced codes not only offer high error correction capability but also are expected to assist practical application in ground-to-satellite laser communications due to achieving easily implementable hardware and potential interoperability with future 5G communication systems.

 



Experimental setup of data transmission with next-gen error correction


Future prospects

The group says that this achievement “leads to the improvement of communication quality for ground-to-satellite laser links and accelerates their practical implementation. It also enables applying existing terrestrial 5G communication protocols and satellite broadcasting standards to space communication network system.”

In the future, this technology is expected to play a key role in ground-to-satellite laser communication systems. This work is to be presented on October 28, 2025 in the International Conference on Space Optical Systems and Applications (ICSOS) 2025, in Kyoto, Japan, a leading international conference on space optical communication systems.

Source: optics.org

Recommandations associées
  • Laserline completes 70% equity acquisition of WBC Photonics

    Recently, Laserline, a leading semiconductor laser manufacturer in Germany, announced that it has completed the acquisition of a 70% stake in WBC Photonics, a Boston based laser technology expert, marking a significant strategic expansion for Laserline. Through this transaction, Laserline not only expands its product portfolio to include blue laser systems with excellent beam quality (better tha...

    2024-09-20
    Voir la traduction
  • Bodor Laser: Laser Cutters Rank First in Global Sales for Six Consecutive Years

    On February 27, at Bodor Laser's global headquarters base in Licheng District, Jinan City, three automated production lines were operating at full capacity, struggling to meet the overwhelming demand. Lu Guohao, Secretary of the Board and Director of the President's Office at Bodor Laser, revealed that the company's laser cutter shipments exceeded 8,000 units in 2024, securing the top spot in glob...

    03-10
    Voir la traduction
  • Technology Frontiers | What is the Next Generation Laser?

    Since the 1960s, lasers have brought revolutionary changes to the world and have now become an indispensable tool in modern applications, from cutting-edge surgical procedures and precision manufacturing to fiber optic data transmission. However, with the increasing demand for laser applications, challenges have also arisen. For example, the market for fiber lasers is constantly expanding, mainly ...

    2024-06-21
    Voir la traduction
  • Europe builds an independent supply chain for Alexander laser crystals for space missions and atmospheric research

    Recently, companies from Lithuania, Italy, and Germany have reached a new milestone in the European independent space mission - based on the Galactic project, they have developed a supply chain for Alexandrite laser crystals in Europe to study changes in the atmosphere and Earth's surface.The high-power Alexander laser crystals and coatings developed in the GALACTIC project will be used to collect...

    2023-12-22
    Voir la traduction
  • 国内自主研发首套碳化硅晶锭激光剥离设备投产

           近日,从江苏通用半导体有限公司传来消息,由该公司自主研发的国内首套的8英寸碳化硅晶锭激光全自动剥离设备正式交付碳化硅衬底生产领域头部企业广州南砂晶圆半导体技术有限公司,并投入生产。 图:8英寸SiC晶锭激光全自动剥离设备       该设备可实现6英寸和8英寸碳化硅晶锭的全自动分片,包含晶锭上料、晶锭研磨、激光切割、晶片分离和晶片收集,一举填补了国内碳化硅晶锭激光剥离设备领域研发、制造的市场空白,突破了国外的技术封锁,将极大地提升我国碳化硅芯片产业的自主化、产业化水平。       该设备年可剥离碳化硅衬底20000片,实现良率95%以上,与传统的线切割工艺相比,大幅降低了产品损耗,而设备售价仅仅是国外同类产品的1/3。       近年来,碳化硅功率器件在大功率半导体市场中所占的份额不断提高,并被广泛应用于新能源汽车、城市轨道交通、风力发电、高速移动、物联网等一系列领域...

    2024-08-26
    Voir la traduction